DOI QR코드

DOI QR Code

Model predictive current control method for PMSM drives based on an improved prediction model

  • Received : 2020.03.11
  • Accepted : 2020.07.23
  • Published : 2020.11.20

Abstract

In motor drive systems based on model predictive control, a mathematic model of the motor is used to predict the future behavior of the system. However, the parameters in the motor model may not match their real values since these parameters may vary under different operation conditions. All parameter variations result in inaccurate predictions, and influence the steady-state control performance of the whole control system. In this paper, an improved model predictive control method is presented. Firstly, when parameter mismatches exist, the sources of the current prediction error are analyzed. It is revealed that current prediction error is directly affected by a prediction model with parameter mismatches and inaccurate one-step delay compensation. In particular, the influence form one-step delay compensation is discussed in this paper. Then a reaching-law-based sliding mode discrete observer is introduced to implement accurate one-step delay compensation and to observe all parameter variations. Finally, a predictive control method combined with sliding-mode discrete observation is presented to reduce parameter sensitivity. Simulation and experimental results show that the proposed method can increase the robustness of model predictive control systems.

Keywords

References

  1. Zhang, X., Li, Z.: Sliding-mode observer-based mechanical parameter estimation for permanent magnet synchronous motor. IEEE Trans. Power Electron. 31(8), 5732-5745 (2016) https://doi.org/10.1109/TPEL.2015.2495183
  2. Xie, W., Wang, X., Wang, F., Wei, Xu, Kennel, R.M., Gerling, D., Lorenz, R.D.: Finite-control-set model predictive torque control with a deadbeat solution for PMSM drives. IEEE Trans. Ind. Electron. 62(9), 5402-5410 (2015) https://doi.org/10.1109/TIE.2015.2410767
  3. Yan, Y., Wang, S., Xia, C., Wang, H., Shi, T.: Hybrid control set-model predictive control for field-oriented control of VSI-PMSM. IEEE Trans. Energy Convers. 31(4), 1622-1633 (2016) https://doi.org/10.1109/TEC.2016.2598154
  4. Wang, X., Sun, D.: Three-vector-based low-complexity model predictive direct power control strategy for doubly fed induction generators. IEEE Trans. Power Electron. 32(1), 773-782 (2017) https://doi.org/10.1109/TPEL.2016.2532387
  5. Wang, G., Wang, Y., Xu, J., et al.: Weight-transducerless rollback mitigation adopting enhanced MPC with extended state observer for direct-drive elevators. IEEE Trans. Power Electron. 31(6), 4440-4451 (2016) https://doi.org/10.1109/TPEL.2015.2475599
  6. Zhang, X., Hou, B.S., Mei, Y.: Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer. IEEE Trans. Power Electron. 32(5), 3818-3834 (2017) https://doi.org/10.1109/TPEL.2016.2592534
  7. Zhou, Z., Xia, C., Yan, Y., Wang, Z., Shi, T.: Torque ripple minimization of predictive torque control for PMSM with extended control set. IEEE Trans. Power Electron. 64(9), 6930-6939 (2017)
  8. Karamanakos, P., Geyer, T., Kennel, R.: A computationally efficient model predictive control strategy for linear systems with integer inputs. IEEE Trans. Control Syst. Technol. 24(4), 1463-1471 (2016) https://doi.org/10.1109/TCST.2015.2501348
  9. Zhang, X., Wang, K.: Current prediction based zero sequence current suppression strategy for the semi-controlled open-winding PMSM generation system with a common DC bus. IEEE Trans. Industr. Electron. 65(8), 6066-6076 (2018) https://doi.org/10.1109/tie.2017.2784353
  10. Xiaoguang, Z., Liang, Z., Yongchang, Z.: Model predictive current control for PMSM drives with parameter robustness improvement. IEEE Trans. Power Electron. 34(2), 1645-1657 (2019) https://doi.org/10.1109/tpel.2018.2835835
  11. Zhang, X., He, Y.: Direct voltage-selection based model predictive direct speed control for PMSM drives without weighting factor. IEEE Trans. Power Electron. 34(8), 7838-7851 (2019) https://doi.org/10.1109/tpel.2018.2880906
  12. Zhang, X., Hou, B., He, Y., Gao, D.: Model predictive torque control of surface mounted permanent magnet synchronous motor drives with voltage cost functions. J. Power Electron. 18(5), 1369-1379 (2018). https://doi.org/10.6113/JPE.2018.18.5.1369
  13. Zhang, X., Hou, B.S.: Double vectors model predictive torque control without weighting factor based on voltage tracking error. IEEE Trans. Power Electron. 33(3), 2368-2380 (2018) https://doi.org/10.1109/TPEL.2017.2691776
  14. Geyer, T., Quevedo, D.E.: Performance of multistep finite control set model predictive control for power electronics. IEEE Trans. Power Electron. 30(3), 1633-1644 (2015) https://doi.org/10.1109/TPEL.2014.2316173
  15. Geyer, T., Quevedo, D.E.: Multistep finite control set model predictive control for power electronics. IEEE Trans. Power Electron. 29(12), 6836-6846 (2014) https://doi.org/10.1109/TPEL.2014.2306939
  16. Linder, A., Kennel, R.: (2005) Model predictive control for electrical drives. In Proc. IEEE 36th Power Electron. Specialists Conf., pp. 1793-1799.
  17. Stellato, B., Geyer, T., Goulart, P.J.: High-speed finite control set model predictive control for power electronics. IEEE Trans. Power Electron. 32(5), 4007-4020 (2017) https://doi.org/10.1109/TPEL.2016.2584678
  18. Young, H.A., Perez, M.A., Rodriguez, J.: Analysis of finite-control-set model predictive current control with model parameter mismatch in a three phase inverter. IEEE Trans. Ind. Electron. 63(5), 3100-3107 (2016) https://doi.org/10.1109/TIE.2016.2515072
  19. Kwak, S., Moon, U.-C., Park, J.-C.: Predictive-control-based direct power control with an adaptive parameter identification technique for improved AFE performance. IEEE Trans. Power Electron. 29(11), 6178-6187 (2014) https://doi.org/10.1109/TPEL.2014.2298041
  20. Bode, G.H., Loh, P.C., Newman, M.J., Holmes, D.G.: An improved robust predictive current regulation algorithm. IEEE Trans. Ind. Appl. 41(6), 1720-1733 (2005) https://doi.org/10.1109/TIA.2005.858324
  21. Yang, M., Lang, X., Long, J., Xu, D.: A flux immunity robust predictive current control with incremental model and extended state observer for PMSM drive. IEEE Trans. Power Electron. 32(12), 9267-9279 (2017) https://doi.org/10.1109/TPEL.2017.2654540
  22. Siami, M., Khaburi, D.A., Abbaszadeh, A., Rodriguez, J.: Robustness improvement of predictive current control using prediction error correction for permanent magnet synchronous machines. IEEE Trans. Ind. Electron. 63(6), 3458-3466 (2016) https://doi.org/10.1109/TIE.2016.2521734
  23. Siami, M., Khaburi, D.A., Rodriguez, J.: Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch. IEEE Trans. Power Electron. 32(9), 7160-7168 (2017) https://doi.org/10.1109/TPEL.2016.2630274
  24. Xia, C., Wang, M., Song, Z., et al.: Robust model predictive current control of three-phase voltage source PWM rectifier with online disturbance observation. IEEE Trans. Ind. Infor. 8(3), 459-471 (2012) https://doi.org/10.1109/TII.2012.2187912
  25. Lin, C.K., Yu, J.T., Lai, Y.S., Yu, H.C.: Improved model-free predictive current control for synchronous reluctance motor drives. IEEE Trans. Ind. Electron. 63(6), 3942-3953 (2016) https://doi.org/10.1109/TIE.2016.2527629
  26. Masadeh, M.A., Pillay, P.: Induction machine parameters determination and the impact of stator/rotor leakage split ratio on its performance. IEEE Trans. Ind. Electron. 67(7), 5291-5301 (2020) https://doi.org/10.1109/tie.2019.2931237
  27. Kim, H.W., Kim, H.J., Choi, J.Y.: Multiparameter identification for SPMSMs using NLMS adaptive filters and extended sliding-mode observer. IET Electric. Power Appl. 14(4), 533-543 (2020) https://doi.org/10.1049/iet-epa.2019.0643
  28. Che, H.S., Abdel-Khalik, A.S., Dordevic, O.: Parameter estimation of asymmetrical six-phase induction machines using modified standard tests. IEEE Trans. Ind. Electron. 64(8), 6075-6085 (2017) https://doi.org/10.1109/TIE.2017.2677349

Cited by

  1. Research on Control Strategy of the Electric Power Steering System for All-Terrain Vehicles Based on Model Predictive Current Control vol.2021, 2020, https://doi.org/10.1155/2021/6642042