DOI QR코드

DOI QR Code

Real-time test-bed system development using power hardware-in-the-loop (PHIL) simulation technique for reliability test of DC nano grid

  • Heo, Kyung-Wook (School of Electrical Engineering, Ulsan National Institute of Science and Technology) ;
  • Choi, Hyun-Jun (School of Electrical Engineering, Ulsan National Institute of Science and Technology) ;
  • Jung, Jee-Hoon (School of Electrical Engineering, Ulsan National Institute of Science and Technology)
  • 투고 : 2020.02.19
  • 심사 : 2020.03.06
  • 발행 : 2020.05.20

초록

Since various power sources such as renewable energy and energy storage systems (ESSs) are connected to the DC grid, the reliability of the grid system is significant. However, the configuration of an actual DC grids for testing the reliability of the grid system is inconvenient, expensive and dangerous. In this paper, a test-bed system made up of a 20-kW DC nano grid and a control algorithm considering an external grid based on power hardware-in-the-loop (PHIL) simulation are proposed to demonstrate the reliability of the DC grid. Using the PHIL simulation technique, target grids can be safely implemented with laboratory-level instruments and simulated by real-time simulators, which emulates grid operations that are similar to the actual grid. In addition, using the proposed control algorithm, the operations of grid-connected converters are demonstrated according to the grid-connected or islanding modes. Finally, the reliability of the simulated DC nano grid and the effectiveness of the grid-connected converter are verified using the PHIL simulation system with 3-kW prototype converters.

키워드

과제정보

This work was supported by the energy efficiency and resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy. (No. 20192010106750).

참고문헌

  1. Ballal, M.S., Bhadane, K.V., Moharil, R.M., Suryawanshi, H.M.: A control and protection model for the distributed generation and energy storage systems in microgrids. J. Power Electron. 16(2), 748-759 (2016) https://doi.org/10.6113/JPE.2016.16.2.748
  2. Liu, G., Khodamoradi, A., Mattavelli, P., Caldognetto, T., Magnone, P.: Plug and play DC-DC converters for smart DC nanogrids with advanced control ancillary services. In: 2018 IEEE 23rd international workshop on computer aided modeling and design of communication links and networks (CAMAD), Barcelona, pp. 1-6.P (2018)
  3. Lucia, O., Cvetkovic, I., Sarnago, H., Boroyevich, D., Mattavelli, P., Lee, F.C.: Design of home appliances for a DC-based nanogrid system: an induction range study case. IEEE J. Emerg. Sel. Top. Power Electron. 1(4), 315-326 (2013) https://doi.org/10.1109/JESTPE.2013.2283224
  4. Teleke, S., Oehlerking, L., Hong, M.: Nanogrids with energy storage for future electricity grids. In: 2014 IEEE PES T&D conference and exposition, chicago, IL, pp. 1-5 (2014)
  5. Eghtedarpour, N., Farjah, E.: Distributed charge/discharge control of energy storages in a renewable-energy-based DC micro-grid. IET Renew. Power Gener. 8(1), 45-57 (2014) https://doi.org/10.1049/iet-rpg.2012.0112
  6. Xie, B., Wang, J., Jin, Y., Ji, Y., Ma, C.: Power distribution control scheme for a three-phase interleaved DC/DC converter in the charging and discharging processes of a battery energy storage system. J. Power Electron. 18(4), 1211-1222 (2018) https://doi.org/10.6113/JPE.2018.18.4.1211
  7. Kim, K., Shin, D., Lee, J., Lee, J.-P., Yoo, D.-W., Kim, H.-J.: A seamless transfer algorithm based on frequency detection with feedforward control method in distributed generation system. J. Power Electron. 15(4), 1066-1073 (2015) https://doi.org/10.6113/JPE.2015.15.4.1066
  8. Li, Z., Zang, C., Zeng, P., Yu, H., Li, H., Li, S.: Analysis of multi-agent-based adaptive droop-controlled AC microgrids with pscad: modeling and simulation. J. Power Electron. 15(2), 455-468 (2015) https://doi.org/10.6113/JPE.2015.15.2.455
  9. Werth, A., Kitamura, N., Tanaka, K.: Conceptual study for open energy systems: distributed energy network using interconnected DC nanogrids. IEEE Trans. Smart Grid 6(4), 1621-1630 (2015) https://doi.org/10.1109/TSG.2015.2408603
  10. Navarro-Rodriguez, A., Garcia, P., Georgious, R., Garcia, J.: Adaptive active power sharing techniques for DC and AC voltage control in a hybrid DC/AC microgrid. IEEE Trans. Ind. Appl. 55(2), 1106-1116 (2019) https://doi.org/10.1109/tia.2018.2873543
  11. Buso, S., Caldognetto, T., Liu, Q.: Analysis and experimental characterization of a large-bandwidth triple-loop controller for grid-tied inverters. IEEE Trans. Power Electron. 34(2), 1936-1949 (2019) https://doi.org/10.1109/tpel.2018.2835158
  12. Chandrasena, R.P.S., Shahnia, F., Ghosh, A., Rajakaruna, S.: Operation and control of a hybrid AC-DC nanogrid for future community houses. In: 2014 Australasian universities power engineering conference (AUPEC), Perth, WA, pp. 1-6 (2014)
  13. Jie, L.R., Naayagi, R.T.: Nanogrid for energy aware buildings. In: 2019 IEEE PES GTD grand international conference and exposition Asia (GTD Asia), Bangkok, Thailand, pp. 92-96 (2019)
  14. Wang, X., Guerrero, J.M., Blaabjerg, F., Chen, Z.: A review of power electronics based microgrids. J. Power Electron. 12(1), 181-192 (2012) https://doi.org/10.6113/JPE.2012.12.1.181
  15. Palmintier, B., Lundstrom, B., Chakraborty, S., Williams, T., Schneider, K., Chassin, D.: A power hardware-in-the-loop platform with remote distribution circuit cosimulation. IEEE Trans. Ind. Electron. 62(4), 2236-2245 (2015) https://doi.org/10.1109/TIE.2014.2367462
  16. Strasser, T., Stifter, M., Andren, F., Palensky, P.: Co-simulation training platform for smart grids. IEEE Trans. Power Syst. 29(4), 1989-1997 (2014) https://doi.org/10.1109/TPWRS.2014.2305740
  17. Salas, V., Debora, P., Olias, E.: Field analysis of commercial PV inverters in the 5 kW power range with respect to MPPT effectively. In: Proceedings of 13th European Conference on power electronics and applications, pp. 1-7 (2009)
  18. Wang, J., Song, Y., Li, W., Guo, J., Monti, A.: Development of a universal platform for hardware in-the-loop testing of microgrids. IEEE Trans. Ind. Inf. 10(4), 2154-2165 (2014) https://doi.org/10.1109/TII.2014.2349271
  19. Bouscayrol, A.: Different types of hardware-in-the-loop simulation for electric drives. In: 2008 IEEE international symposium on industrial electronics, Cambridge, pp. 2146-2151 (2008)
  20. Edrington, C.S., Vodyakho, O., Hacker, B.A.: Development of a unified research platform for plug-in hybrid electrical vehicle integration analysis utilizing the power hardware-in-the-loop concept. J. Power Electron. 11(4), 471-478 (2011) https://doi.org/10.6113/JPE.2011.11.4.471
  21. Huerta, F., Tello, R.L., Prodanovic, M.: Real-time power-hardware-in-the-loop implementation of variable-speed wind turbines. IEEE Trans. Ind. Electron. 64(3), 1893-1904 (2017) https://doi.org/10.1109/TIE.2016.2624259
  22. Sousa, T.J.C., Monteiro, V., Martins, J.S., Sepulveda, M.J., Lima, A., Afonso, J.L.: Comparative analysis of power electronics topologies to interface dc homes with the electrical ac power grid. In: 2019 International conference on smart energy systems and technologies (SEST), Porto, Portugal, pp. 1-6 (2019)
  23. Rodriguez, A., Vazquez, A., Lamar, D.G., Hernando, M.M., Sebastian, J.: Different purpose design strategies and techniques to improve the performance of a dual active bridge with phase-shift control. IEEE Trans. Power Electron. 30(2), 790-804 (2015) https://doi.org/10.1109/TPEL.2014.2309853
  24. Kim, Y.W., Kwon, M.H., Park, S.Y., Kim, M.K., Yang, D.K., Choi, S.W., Oh, S.J.: Development of 80 kW bi-directional hybrid-SIC boost-buck converter using droop control in DC nano-grid. Trans. Korean Inst. Power Electron. 22(4), 360-368 (2017) https://doi.org/10.6113/TKPE.2017.22.4.360
  25. Le, P.M., Pham, X.H.T., Nguyen, H.M., Hoang, D.D.V., Nguyen, T.D., Vo, D.N.: Line impedance estimation based adaptive droop control method for parallel inverters. J. Power Electron. 18(1), 234-250 (2018) https://doi.org/10.6113/JPE.2018.18.1.234
  26. Jia, Y., Li, D., Chen, Z.: Unbalanced power sharing for islanded droop-controlled microgrids. J. Power Electron. 19(1), 234-243 (2019) https://doi.org/10.6113/JPE.2019.19.1.234
  27. Choi, H., Jung, J.: Enhanced power line communication strategy for DC microgrids using switching frequency modulation of power converters. IEEE Trans. Power Electron. 32(6), 4140-4144 (2017) https://doi.org/10.1109/TPEL.2017.2648848
  28. Schonbergerschonberger, J., Duke, R., Round, S.D.: DC-bus signaling: a distributed control strategy for a hybrid renewable nanogrid. IEEE Trans. Ind. Electron. 53(5), 1453-1460 (2006) https://doi.org/10.1109/TIE.2006.882012

피인용 문헌

  1. Integrated control scheme for dynamic power management with improved voltage regulation in DC microgrid vol.20, pp.6, 2020, https://doi.org/10.1007/s43236-020-00152-1
  2. Practical Controller Design of Three-Phase Dual Active Bridge Converter for Low Voltage DC Distribution System vol.9, pp.12, 2020, https://doi.org/10.3390/electronics9122101