DOI QR코드

DOI QR Code

Cooperative control strategy for voltage restoration and power allocation in DC microgrids

  • Received : 2020.02.28
  • Accepted : 2020.05.06
  • Published : 2020.07.20

Abstract

This paper proposes a novel cooperative control strategy for voltage restoration and power management in DC microgrids based on the DC bus signaling (DBS) method. In the conventional DBS method, the operation mode is determined according to the voltage deviation. Thus, it is difficult to achieve voltage restoration. To overcome this problem, the conventional DBS method is modified by applying the total power of dispatchable units (DUs) to identify the operation mode instead of the voltage deviation. As a result, the average output voltage of the DUs is restored to its nominal value in all of the operation modes without difficulty. In addition, accurate power sharing is achieved regardless of the line impedance or load change by regulating the voltage magnitude using a simple PI controller. Furthermore, the control performance is theoretically analyzed using a small signal analysis to evaluate the stability of system. The proposed method is validated with results from a lab scale experiment.

Keywords

Acknowledgement

This work was supported in part by the NRF of Korea Grant under Grant NRF-2018R1D1A1A09081779 and in part by the KETEP and the MOTIE under Grant 20194030202310.

References

  1. Justo, J.J., Mwasilu, F., Lee, J., Jung, J.-W.: AC-microgrids versus DC-microgrids with distributed energy resources: a review. Renew. Sustain. Energy Rev. 24(C), 387-405 (2013) https://doi.org/10.1016/j.rser.2013.03.067
  2. Dragicevic, T., Vasquez, J.C., Guerrero, J.M., Skrlec, D.: Advanced LVDC electrical power architectures and microgrids: a step toward a new generation of power distribution networks. IEEE Electrif. Mag. 2(1), 54-65 (2014) https://doi.org/10.1109/mele.2013.2297033
  3. Diaz, N.L., Dragicevic, T., Vasquez, J.C., Guerrero, J.M.: Intelligent distributed generation and storage units for DC microgrids-A new concept on cooperative control without communications beyond droop control. IEEE Trans. Smart Grid. 5(5), 2476-2485 (2014) https://doi.org/10.1109/TSG.2014.2341740
  4. Chen, F., Burgos, R., Boroyevich, D., Vasquez, J.C., Guerrero, J.M.: Investigation of nonlinear droop control in dc power distribution systems: load sharing, voltage regulation, efficiency, and stability. IEEE Trans. Power Electron. 34(10), 9404-9421 (2019) https://doi.org/10.1109/tpel.2019.2893686
  5. Dam, D., Lee, H.: A power distributed control method for proportional load power sharing and bus voltage restoration in a DC microgrid. IEEE Trans. Ind. Appl. 54(4), 3616-3625 (2018) https://doi.org/10.1109/TIA.2018.2815661
  6. Dragicevic, T., Lu, X., Vasquez, J.C., Guerrero, J.M.: DC microgrids-part I: a review of control strategies and stabilization techniques. IEEE Trans. Power Electron. 31(7), 4876-4891 (2016) https://doi.org/10.1109/TPEL.2015.2478859
  7. Meng, L., Shafiee, Q., Trecate, G.F., Karimi, H., Fulwani, D., Lu, X., Guerrero, J.M.: Review on control of DC microgrids and multiple microgrid clusters. IEEE J. Emerg. Sel. Top Power Electron. 5(3), 928-948 (2017) https://doi.org/10.1109/JESTPE.2017.2690219
  8. Anand, S., Fernandes, B.G., Guerrero, J.: Distributed control to ensure proportional load sharing and improve voltage regulation in low-voltage DC microgrids. IEEE Trans. Power Electron. 28(4), 1900-1913 (2013) https://doi.org/10.1109/TPEL.2012.2215055
  9. Gavriluta, C., Candela, J.I., Citro, C., Rocabert, J., Luna, A., Rodriguez, P.: Decentralized primary control of MTDC networks with energy storage and distributed generation. IEEE Trans. Ind. Appl. 50(6), 4122-4131 (2014) https://doi.org/10.1109/TIA.2014.2315715
  10. Ko, B., Lee, G., Choi, K., Kim, R.: A coordinated droop control method using a virtual voltage axis for power management and voltage restoration of DC microgrids. IEEE Trans. Ind. Electron. 66(11), 9076-9085 (2019) https://doi.org/10.1109/tie.2018.2877135
  11. Lin, P., Zhang, C., Wang, P., Xiao, J.: A decentralized composite controller for unified voltage control with global system large-signal stability in DC microgrids. IEEE Trans. Smart Grid. 10(5), 5075-5091 (2019) https://doi.org/10.1109/tsg.2018.2875165
  12. Nguyen, T.L., Guerrero, J.M., Griepentrog, G.: A self-sustained and flexible control strategy for islanded DC nanogrids without communication links. IEEE J. Emerg. Sel. Top. Power Electron. 1, 877-892 (2019)
  13. Erickson, R.W., Maksimovic, D.: Fundamentals of power electronics. Springer, Berlin (2001)

Cited by

  1. SoC balancing method for energy storage systems in DC microgrids using simplified droop control vol.21, pp.8, 2020, https://doi.org/10.1007/s43236-021-00260-6