DOI QR코드

DOI QR Code

An efficient hybrid digital architecture for space vector PWM method for multilevel VSI

  • Anjana, K.G. (Department of Electrical and Electronics Engineering, National Institute of Technology) ;
  • Aswini Kumar, M. (Department of Electrical and Electronics Engineering, National Institute of Technology) ;
  • Biswas, Jayanta (Department of Computer Science, Christ University) ;
  • Barai, Mukti (Department of Electrical and Electronics Engineering, National Institute of Technology)
  • 투고 : 2020.02.17
  • 심사 : 2020.06.30
  • 발행 : 2020.09.20

초록

This paper presents an efficient, cost effective design implementation of a hybrid digital architecture for space vector pulse width modulation (SVPWM) method for multilevel inverters (MLIs). The SVPWM method is one of the most popular real time PWM method for three phase voltage source inverter (VSI). The implementation of SVPWM method becomes complex with an increase in the number of levels in a multilevel inverter. The SVPWM method for multilevel inverter is a multitask system. The main constraint when it comes to implementing SVPWM for multilevel inverters is the processing of dwell time computation and the generation of PWM gate signals for all of the switches with an accurate delay. A hybrid hardware structure consisting of a simple low-cost, low-power dsPIC micro controller (dsPIC 30F4011) and a state of the art Field Programmable Gate Array (FPGA) (Cyclone V 5CGXFC5C6F27C7N) is used to implement SVPWM. The proposed hybrid digital architecture utilizes the advantages and resources of the dsPIC and FPGA. The hybrid digital architecture meets the timing constraints of multitasking through synchronization and parallelism. A communication interface between the dsPIC and the FPGA reduces the design complexity. The software overhead for the communication interface remains fixed for any number of levels. The hybrid structure of the digital architecture provides scalability for the SVPWM method with more number of levels in multilevel inverter. The operation of the proposed hybrid digital architecture is experimentally validated with an optimized SVPWM method for a five level VSI. An optimized region identification algorithm and simple dwell time expressions are described for a five level SVPWM. The input DC of the five level VSI is obtained from a differential power processing (DPP) based PV system. Experimental results under different operating conditions are presented.

키워드

참고문헌

  1. Patel, H., Agarwal, V.: Matlab-based modeling to study the effects of partial shading on pv array characteristics. IEEE Trans. Energy Convers. 23(1), 302-310 (2008) https://doi.org/10.1109/TEC.2007.914308
  2. Shenoy, P.S., Kim, K.A., Johnson, B.B., Krein, P.T.: Differential power processing for increased energy production and reliability of photovoltaic systems. IEEE Trans. Power Electron. 28(6), 2968-2979 (2013) https://doi.org/10.1109/TPEL.2012.2211082
  3. Kim, K.A., Shenoy, P.S., Krein, P.T.: Converter rating analysis for photovoltaic differential power processing systems. IEEE Trans. Power Electron. 30(4), 1987-1997 (2015) https://doi.org/10.1109/TPEL.2014.2326045
  4. Biswas, J., Kamath, A.M., Gopi, A.K., Barai, M.: Design, architecture, and real-time distributed coordination DMPPT algorithm for pv systems. IEEE J. Emerg. Selected Topics Power Electron 6(3), 1418-1433 (2018) https://doi.org/10.1109/jestpe.2017.2756698
  5. Rodriguez, J.: Jih-Sheng Lai, and Fang heng Peng, "Multilevel inverters: a survey of topologies, controls, and applications". IEEE Trans. Industr. Electron. 49(4), 724-738 (2002) https://doi.org/10.1109/TIE.2002.801052
  6. Kouro, S., Malinowski, M., Gopakumar, K., Pou, J., Franquelo, L.G., Wu, B., Rodriguez, J., Perez, M.A., Leon, J.I.: Recent advances and industrial applications of multilevel converters. IEEE Trans. Industr. Electron. 57(8), 2553-2580 (2010) https://doi.org/10.1109/TIE.2010.2049719
  7. McGrath, P., Holmes, D.G.: Multicarrier PWM strategies for multilevel inverters. IEEE Trans. Industr. Electron. 49(4), 858-867 (2002) https://doi.org/10.1109/TIE.2002.801073
  8. Bruckner, T., Holmes, D.G.: Optimal pulse-width modulation for three-level inverters. IEEE Trans. Power Electron. 20(1), 82-89 (2005) https://doi.org/10.1109/TPEL.2004.839831
  9. Holmes, G., Lipo, T. A.: "Pulse width modulation for power converter, principles and practice,© 2003 the institute of electrical and electronics engineers" (2003)
  10. Narayanan, G., Ranganathan, V.T.: "Synchronised PWM strategies based on space vector approach. I. principles of waveform generation". IEE Proceed. Electric. Power Appl. 146(3), 267-275 (1999) https://doi.org/10.1049/ip-epa:19990118
  11. Narayanan, G., Ranganathan, V.: Synchronized PWM strategies based on space vector approach. Part 2: Performance assessment and application to v/f drives. IEE Proceed. Electric Power Appl. 146(3), 276-281 (1999) https://doi.org/10.1049/ip-epa:19990119
  12. Yao, W., Hu, H., Lu, Z.: Comparisons of space vector modulation and carrier-based modulation of multilevel inverter. IEEE Trans. Power Electron. 23(1), 45-51 (2008) https://doi.org/10.1109/TPEL.2007.911865
  13. Krishna, H., Amarnath, J., Kamakshiah, S.: Simplifed svpwm algorithm based diode clamped 3-level inverter fed DTC-IM drive. Int. J. Eng. Sci. Technol. 4(5), 2037-2046 (2012)
  14. Jae Hyeong Seo: Chang Ho Choi, and Dong Seok Hyun, "A new simplifed space-vector PWM method for three level inverters". IEEE Trans. Power Electron. 16(4), 545-550 (2001)
  15. Zhang, Y., Zhao, Z., Zhu, J.: A hybrid PWM applied to high-power three-level inverter-fed induction-motor drives. IEEE Trans. Industr. Electron. 58(8), 3409-3420 (2011) https://doi.org/10.1109/TIE.2010.2090836
  16. Beig, A. R., Ranganathan, V.: "Space vector based bus clamped PWM algorithms for three level inverters: implementation, performance analysis and application considerations", in Eighteenth Annual IEEE Appl Power Electron Conference and Exposition. APEC '03., 1 569-575 (2003)
  17. Celanovic, N., Boroyevich, D.: A fast space-vector modulation algorithm for multilevel three-phase converters. IEEE Trans. Ind. Appl. 37(2), 637-641 (2001) https://doi.org/10.1109/28.913731
  18. Sanmin, Wei., Bin, Wu., Fahai, Li., Congwei Liu.: "A general space vector PWM control algorithm for multilevel inverters", in Eighteenth Annual IEEE Appl Power Electron Conference and Exposition. APEC '03., 1, 562-568 (2003)
  19. Gupta, K., Khambadkone, A.M.: A space vector PWM scheme for multilevel inverters based on two-level space vector PWM. IEEE Trans. Industr. Electron. 53(5), 1631-1639 (2006) https://doi.org/10.1109/TIE.2006.881989
  20. Narayanan, G., Zhao, D., Krishnamurthy, H.K., Ayyanar, R., Ranganathan, V.T.: Space vector based hybrid PWM techniques for reduced current ripple. IEEE Trans. Industr. Electron. 55(4), 1614-1627 (2008) https://doi.org/10.1109/TIE.2007.907670
  21. Das, S., Narayanan, G., Pandey, M.: Space-vector based hybrid pulse width modulation techniques for a three-level inverter. IEEE Trans. Power Electron. 29(9), 4580-4591 (2014) https://doi.org/10.1109/TPEL.2013.2287095
  22. Deng, Y., Teo, K.H., Duan, C., Habetler, T.G., Harley, R.G.: A fast and generalized space vector modulation scheme for multilevel inverters. IEEE Trans. Power Electron. 29(10), 5204-5217 (2014) https://doi.org/10.1109/TPEL.2013.2293734
  23. Lupon, E., Busquets-Monge, S., Nicolas-Apruzzese, J.: FPGA implementation of a PWM for a three-phase dc-ac multilevel active-clamped converter. IEEE Trans. Industr. Inf. 10(2), 1296-1306 (2014) https://doi.org/10.1109/TII.2014.2309483
  24. Vardhan, H., Akin, B., Jin, H.: A low-cost, high fdelity processorin-the loop platform: For rapid prototyping of power electronics circuits and motor drives. IEEE Power Electronics Magazine 3(2), 18-28 (2016) https://doi.org/10.1109/MPEL.2016.2550239
  25. Diao, L., Tang, J., Loh, P.C., Yin, S., Wang, L., Liu, Z.: An efficient DSP-FPGA based implementation of hybrid PWM for electric rail traction induction motor control. IEEE Trans. Power Electron. 33(4), 3276-3288 (2018) https://doi.org/10.1109/tpel.2017.2707639
  26. Jiang, W., Li, W., Wu, Z., She, Y., Tao, Z.: Space vector pulse-width modulation algorithm for multilevel voltage source inverters based on matrix transformation and including operation in the over-modulation region. IET Power Electronics 7(12), 2925-2933 (2014) https://doi.org/10.1049/iet-pel.2013.0823
  27. Ovalle, M. E., Hernandez, and G. A. Ramos.: "A flexible non-orthogonal reference frame based SVPWM framework for multilevel inverters", IEEE Trans Power Electron 32(6) 4925-4938 (2017) https://doi.org/10.1109/TPEL.2016.2602324
  28. Jana, K.C., Biswas, S.K.: Generalized switching scheme for a space vector pulse-width modulation based n-level inverter with reduced switching frequency and harmonics. IET Power Electronics 8(12), 2377-2385 (2015) https://doi.org/10.1049/iet-pel.2015.0101
  29. Janabi, B., Wang.: "Hybrid SVPWM scheme to minimize the common-mode voltage frequency and amplitude in voltage source inverter drives". IEEE Trans Power Electron 34(2) 1595-1610 (2019) https://doi.org/10.1109/tpel.2018.2834409
  30. Zhang, H., Meng, Y., Ning, L., Zou, Y., Wang, X., Wang, X.: Fast and simple space vector modulation method for multilevel converters. IET Power Electron. 13(1), 14-22 (2020) https://doi.org/10.1049/iet-pel.2019.0264
  31. Sun, X., Hu, C., Lei, G., Guo, Y., Zhu, J.: State feedback control for a PM HUB motor based on gray wolf optimization algorithm. IEEE Trans. Power Electron. 35(1), 1136-1146 (2020) https://doi.org/10.1109/tpel.2019.2923726
  32. Sun, X., Diao, K., Lei, G., Guo, Y., Zhu, J.: Real time HIL emulation for a segmented-rotor switched reluctance motor using a new magnetic equivalent circuit. IEEE Trans. Power Electron. 35(4), 3841-3849 (2020) https://doi.org/10.1109/tpel.2019.2933664
  33. Microchip, http:ww1.microchip.com/download/en/devicedoc/70135g.pdf"
  34. Vivek, G., Biswas, J., Muthavarapu, A. K., Nair, M.D., Barai, M.: "Optimised design and implementation of svpwm switching sequences for five level VSI". IEEE Int. Conference Power Electron Drives Energy Syst. (PEDES), 1-6 (2018)
  35. Renge, M. M., Suryawanshi, H.M.: "Five-level diode clamped inverter to eliminate common mode voltage and reduce dv/dt in medium voltage rating induction motor drives". IEEE Trans. Power Electron. 23(4) 1598-1607 (2008) https://doi.org/10.1109/TPEL.2008.925423
  36. Susheela, N., Kumar, P.S., Sharma, S. K.: "Generalized algorithm of reverse mapping based SVPWM strategy for diode-clamped multilevel inverters". IEEE Trans. Indus. Appl. 54(3) 2425-2437 (2018) https://doi.org/10.1109/tia.2018.2790906