DOI QR코드

DOI QR Code

Soft-switching and low conduction loss current-fed isolated bidirectional DC-DC converter with PWM plus dual phase-shift control

  • Zhang, Zhao (College of Automation Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Xie, Shaojun (College of Automation Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Wu, Zhiying (College of Automation Engineering, Nanjing University of Aeronautics and Astronautics) ;
  • Xu, Jinming (College of Automation Engineering, Nanjing University of Aeronautics and Astronautics)
  • 투고 : 2020.01.03
  • 심사 : 2020.03.06
  • 발행 : 2020.05.20

초록

In battery energy storage systems, the battery and DC bus voltages vary greatly. This makes it difficult for the battery storage converter to maintain high efficiencies under all circumstances. A current-fed isolated bidirectional DC-DC converter is presented in this paper. This converter contains two series transformers, two conventional current-fed half-bridges at the battery side and two half-bridges at the DC bus side. PWM plus dual phase shift modulation with equal duty cycles and voltage-matched control is applied to ensure ZVS of all the switches and low conduction losses. The average and backflow power transmission equations and soft-switching conditions for all of the operation modes in the full operation range are analyzed comprehensively in this paper. Then six recommended modes are addressed based on the above analyses. Moreover, the control scheme and hardware design guidelines are addressed. Finally, the above theoretical analyses and control strategy are verified by experimental results.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China under Award 51877104.

참고문헌

  1. Zhang, Z., Cai, Y., Zhang, Y., et al.: A distributed architecture based on microbank modules with self-reconfiguration control to improve the energy efficiency in the battery energy storage system. IEEE Trans. Power Electron. 31(1), 304-317 (2016) https://doi.org/10.1109/TPEL.2015.2406773
  2. Everts, J., Krismer, F., Van den Keybus, J., et al.: Optimal ZVS modulation of single-phase single-stage bidirectional DAB AC-DC converters. IEEE Trans. Power Electron. 29(8), 3954-3970 (2014) https://doi.org/10.1109/TPEL.2013.2292026
  3. Zhao, B., Song, Q., Liu, W., et al.: Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron. 29(8), 4091-4106 (2014) https://doi.org/10.1109/TPEL.2013.2289913
  4. Zhao, B., Song, Q., Liu, W., et al.: Universal high-frequency-link characterization and practical fundamental-optimal strategy for dual-active-bridge DC-DC converter under PWM plus phase-shift control. IEEE Trans. Power Electron. 30(12), 6488-6494 (2015) https://doi.org/10.1109/TPEL.2015.2430934
  5. Wolfs, P.J.: A current-sourced DC-DC converter derived via the duality principle from the half-bridge converter. IEEE Trans. Ind. Electron. 40(1), 139-144 (1993) https://doi.org/10.1109/41.184830
  6. Jiang, T., Zhang, J., Wu, X., et al.: A bidirectional LLC resonant converter with automatic forward and backward mode transition. IEEE Trans. Power Electron. 30(2), 757-770 (2015) https://doi.org/10.1109/TPEL.2014.2307329
  7. Corradini, L., Seltzer, D., Bloomquist, D., et al.: Minimum current operation of bidirectional dual-bridge series resonant DC-DC converters. IEEE Trans. Power Electron. 27(7), 3266-3276 (2012) https://doi.org/10.1109/TPEL.2011.2181421
  8. He, P., Mallik, A., Sankar, A., et al.: Design of a 1-MHz high-efficiency high-power-density bidirectional GaN-based CLLC converter for electric vehicles. IEEE Trans. Veh. Technol. 68(1), 213-223 (2019) https://doi.org/10.1109/TVT.2018.2881276
  9. Ding, Z., Yang, C., Zhang, Z., et al.: A novel soft-switching multiport bidirectional DC-DC converter for hybrid energy storage system. IEEE Trans. Power Electron. 29(4), 1595-1609 (2014) https://doi.org/10.1109/TPEL.2013.2264596
  10. Xiao, H., Xie, S.: A ZVS bidirectional DC-DC converter with phase-shift plus PWM control scheme. IEEE Trans. Power Electron. 23(2), 813-823 (2008) https://doi.org/10.1109/TPEL.2007.915188
  11. Liang, T., Lee, J.: Novel high-conversion-ratio high-efficiency isolated bidirectional DC-DC converter. IEEE Trans. Ind. Electron. 62(7), 4492-4503 (2015) https://doi.org/10.1109/TIE.2014.2386284
  12. Sha, D., Lin, Q., You, F., et al.: A ZVS bidirectional three-level DC-DC converter with direct current slew rate control of leakage inductance current. IEEE Trans. Ind. Appl. 52(3), 2368-2377 (2016) https://doi.org/10.1109/TIA.2015.2512225
  13. Li, W., Wu, H., Yu, H., et al.: Isolated winding-coupled bidirectional ZVS converter with PWM plus phase-shift (PPS) control strategy. IEEE Trans. Power Electron. 26(12), 3560-3570 (2011) https://doi.org/10.1109/TPEL.2011.2162852
  14. Sha, D., Zhang, J., Wang, X., et al.: Dynamic response improvements of parallel-connected bidirectional DC-DC converters for electrical drive powered by low-voltage battery employing optimized feedforward control. IEEE Trans. Power Electron. 32(10), 7783-7794 (2017) https://doi.org/10.1109/TPEL.2016.2637370
  15. Sha, D., Wang, X., Xu, Y.: Unequal PWM control for a current-fed dc-dc converter for battery application. In: 2017 IEEE applied power electronics conference and exposition (APEC), pp. 3373-3377 (2017)
  16. Sha, D., Wang, X., Chen, D.: High-efficiency current-fed dual active bridge DC-DC converter with ZVS achievement throughout full range of load using optimized switching patterns. IEEE Trans. Power Electron. 33(2), 1347-1357 (2018) https://doi.org/10.1109/TPEL.2017.2675945
  17. Sha, D., Wang, X., Liu, K., et al.: A current-fed dual-active-bridge DC-DC converter using extended duty cycle control and magnetic-integrated inductors with optimized voltage mismatching control. IEEE Trans. Power Electron. 34(1), 462-473 (2019) https://doi.org/10.1109/TPEL.2018.2825991
  18. Shi, Y., Li, R., Xue, Y., et al.: Optimized operation of current-fed dual active bridge DC-DC converter for PV applications. IEEE Trans. Ind. Electron. 62(11), 6986-6995 (2015) https://doi.org/10.1109/TIE.2015.2432093
  19. Guo, Z., Sun, K., Wu, T., et al.: An improved modulation scheme of current-fed bidirectional DC-DC converters for loss reduction. IEEE Trans. Power Electron. 33(5), 4441-4457 (2018) https://doi.org/10.1109/tpel.2017.2719722
  20. Prasanna, U.R., Rathore, A.K., Mazumder, S.K.: Novel zero-current-switching current-fed half-bridge isolated DC/DC converter for fuel-cell-based applications. IEEE Trans. Ind. Appl. 49(4), 1658-1668 (2013) https://doi.org/10.1109/TIA.2013.2257980
  21. Rathore, A.K., Prasanna, U.R.: Analysis, design, and experimental results of novel snubberless bidirectional naturally clamped ZCS/ZVS current-fed half-bridge DC/DC converter for fuel cell vehicles. IEEE Trans. Ind. Electron. 60(10), 4482-4491 (2013) https://doi.org/10.1109/TIE.2012.2213563
  22. Nayanasiri, D.R., Foo, G.H.B., Vilathgamuwa, D.M., et al.: A switching control strategy for single- and dual-inductor current-fed push-pull converters. IEEE Trans. Power Electron. 30(7), 3761-3771 (2015) https://doi.org/10.1109/TPEL.2014.2348800
  23. Zhang, Z., Wu, Z., Xie, S., et al: A soft-switching current-fed isolated bidirectional dc-dc converter with low circulating power and easy-implemented control strategy. In: Proceedings of IEEE energy conversion congress and exposition, pp. 1310-1314 (2019)
  24. Wen, H., Xiao, W., Su, B.: Nonactive power loss minimization in a bidirectional isolated DC-DC converter for distributed power systems. IEEE Trans. Ind. Electron. 61(12), 6822-6831 (2014) https://doi.org/10.1109/TIE.2014.2316229
  25. Shi, H., Wen, H., Chen, J., et al.: Minimum-backflow-power scheme of DAB-based solid-state transformer with extended-phase-shift control. IEEE Trans. Ind. Appl. 54(4), 3483-3496 (2018) https://doi.org/10.1109/tia.2018.2819120

피인용 문헌

  1. Modeling and controller optimization for current-fed isolated bidirectional DC-DC converters vol.20, pp.6, 2020, https://doi.org/10.1007/s43236-020-00139-y
  2. Practical Controller Design of Three-Phase Dual Active Bridge Converter for Low Voltage DC Distribution System vol.9, pp.12, 2020, https://doi.org/10.3390/electronics9122101