DOI QR코드

DOI QR Code

Impact of snubber parameters on voltage sharing in series-connected insulated gate bipolar transistors

  • Son, Myeongsu (Department of Electrical Engineering, Konkuk University) ;
  • Lee, Taeyeong (Department of Electrical Engineering, Konkuk University) ;
  • Kwon, Soyeon (Department of Electrical Engineering, Konkuk University) ;
  • Cho, Younghoon (Department of Electrical Engineering, Konkuk University)
  • Received : 2020.03.26
  • Accepted : 2020.04.23
  • Published : 2020.07.20

Abstract

This paper shows the relationship between the circuit parameters and the voltage sharing performance in series-connected insulated gated bipolar transistors (IGBTs). A simple analytic model is proposed to examine voltage balancing in series-connected IGBTs. By the proposed model, the reason for voltage imbalance is easily analyzed. In addition, the impact of the time constant of the snubber, which is affected by the snubber components, is detailed. From this analysis, it has been demonstrated that the snubber capacitance should be at least double the output capacitance of the switching device to stabilize voltage sharing. To verify the usefulness of the proposed technique, a multiple pulse tester has been implemented and tested. Experimental results reveal that the error between the proposed model and the practical system is only 1.7%. In addition, the accuracy of the proposed model is high enough to be utilized for the analysis of the series-connected IGBTs.

Keywords

Acknowledgement

This work was supported by "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20194030202370). This research was supported by Korea Electric Power Corporation(Grant Number: R18XA06-61).

References

  1. Boroyevich, D., Cvetkovic, I., Burgos, R., Dong, D.: Intergrid: a future electronic energy network? IEEE J. Emerg. Sel. Top. Power Electron. 1(3), 127-138 (2013) https://doi.org/10.1109/JESTPE.2013.2276937
  2. Qin, H., Kimball, J.W.: Closed-loop control of DC-DC dual-active-bridge converters driving single-phase inverters. IEEE Trans. Power Electron. 29(2), 1006-1017 (2014) https://doi.org/10.1109/TPEL.2013.2257859
  3. She, X., Huang, A.Q., Burgos, R.: Review of solid-state transformer technologies and their application in power distribution systems. IEEE J. Emerg. Sel. Top. Power Electron. 1(3), 186-198 (2013) https://doi.org/10.1109/JESTPE.2013.2277917
  4. Lim, T.C., Williams, B.W., Finney, S.J., Palmer, P.R.: Series-connected IGBTs using active voltage control technique. IEEE Trans. Power Electron. 28(8), 4083-4103 (2013) https://doi.org/10.1109/TPEL.2012.2227812
  5. Ji, S., Lu, T., Zhao, Z., Yu, H., Yuan, L.: Series-connected HV-IGBTs Using active voltage balancing control with status feedback circuit. IEEE Trans. Power Electron. 30(8), 4165-4174 (2015) https://doi.org/10.1109/TPEL.2014.2360189
  6. Fujii, K., Kunomura, K., Yoshida, K., Suzuki, A., Konishi, S., Daiguji, M., Baba, K.: STATCOM applying flat-packaged IGBTs connected in series. IEEE Trans. Power Electron. 20(5), 1125-1132 (2005) https://doi.org/10.1109/TPEL.2005.854054
  7. Ji, S., Wang, F., Tolbert, L.M., Lu, T., Zhao, Z., Yu, H.: An FPGA-based voltage balancing control for multi-HV-IGBTs in series connection. IEEE Trans. Ind. Appl. 54(5), 4640-4649 (2018) https://doi.org/10.1109/tia.2018.2836936
  8. Nguyen, T.V., Jeannin, P., Vagnon, E., Frey, D., Crebier, J.: Series connection of IGBTs with self-powering technique and 3-D topology. IEEE Trans. Ind. Appl. 47(4), 1844-1852 (2011) https://doi.org/10.1109/TIA.2011.2153817
  9. Withanage, R., Shammas, N.: Series connection of insulated gate bipolar transistors (IGBTs). IEEE Trans. Power Electron. 27(4), 2204-2212 (2012) https://doi.org/10.1109/TPEL.2011.2167000
  10. Zhang, F., Yang, X., Ren, Y., Feng, L., Chen, W., Pei, Y.: A hybrid active gate drive for switching loss reduction and voltage balancing of series-connected IGBTs. IEEE Trans. Power Electron. 32(10), 7469-7481 (2017) https://doi.org/10.1109/TPEL.2016.2633658
  11. Azar, R., Udrea, F., Silva, M.D., Amaratunga, G., Wai Tung, N., Dawson, F., Findlay, W., Waind, P.: Advanced SPICE modeling of large power IGBT modules. IEEE Trans. Ind. Appl. 40(3), 710-716 (2004) https://doi.org/10.1109/TIA.2004.827456
  12. Ji, S., Zhao, Z., Lu, T., Yuan, L., Yu, H.: HVIGBT physical model analysis during transient. IEEE Trans. Power Electron. 28(5), 2616-2624 (2013) https://doi.org/10.1109/TPEL.2012.2218620
  13. Jin, M., Weiming, M.: Power converter EMI analysis including IGBT nonlinear switching transient model. IEEE Trans. Ind. Electron. 53(5), 1577-1583 (2006) https://doi.org/10.1109/TIE.2006.882009
  14. Wu, Y., Yin, S., Li, H., Ma, W.: Impact of $RC$ snubber on switching oscillation damping of SiC MOSFET with analytical model. IEEE J. Emerg. Sel. Top. Power Electron. 8(1), 163-178 (2020) https://doi.org/10.1109/jestpe.2019.2953272
  15. Chen, K., Zhao, Z., Yuan, L., Lu, T., He, F.: The impact of nonlinear junction capacitance on switching transient and its modeling for SiC MOSFET. IEEE Trans. Electron Dev. 62(2), 333-338 (2015) https://doi.org/10.1109/TED.2014.2362657
  16. Ahmed, M.R., Todd, R., Forsyth, A.J.: Predicting SiC MOSFET behavior under hard-switching, soft-switching, and false turn-on conditions. IEEE Trans. Ind. Electron. 64(11), 9001-9011 (2017) https://doi.org/10.1109/TIE.2017.2721882
  17. Bauer, F.D.: Conceptual study of Sub-600 V IGBTs. IEEE Trans. Power Electron. 30(9), 5116-5124 (2015) https://doi.org/10.1109/TPEL.2014.2363366
  18. Xue, P., Fu, G., Zhang, D.: Modeling inductive switching characteristics of high-speed buffer layer IGBT. IEEE Trans. Power Electron. 32(4), 3075-3087 (2017) https://doi.org/10.1109/TPEL.2016.2570838
  19. Liu, T., Ning, R., Wong, T.T.Y., Shen, Z.J.: Modeling and analysis of SiC MOSFET switching oscillations. IEEE J. Emerg. Sel. Top. Power Electron. 4(3), 747-756 (2016) https://doi.org/10.1109/JESTPE.2016.2587358
  20. Li, S., Tolbert, L.M., Wang, F., Peng, F.Z.: Stray inductance reduction of commutation loop in the P-cell and N-cell-based IGBT phase leg module. IEEE Trans. Power Electron. 29(7), 3616-3624 (2014) https://doi.org/10.1109/TPEL.2013.2279258

Cited by

  1. Modelling and solving of IGBT's transient analysis model based on the finite state machine vol.14, pp.11, 2020, https://doi.org/10.1049/pel2.12163