DOI QR코드

DOI QR Code

Fault-tolerant control strategy for open-circuit fault of two-parallel-connected three-phase AC-DC two-level PWM converter

  • Ku, Hyun-Keun (Power Grid Group, Next Generation Transmission & Laboratory, Research Institute, Korea Electric Power Corporation) ;
  • Jung, Jun-Hyung (Southeast Korea GRAND ICT Research Center, Pusan National University) ;
  • Park, Jin-Woo (Appliance R&D Lab, LG Electronics) ;
  • Kim, Jang-Mok (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Son, Yung-Dueg (Department of Mechanical Facility Control Engineering, Korea University of Technology and Education)
  • 투고 : 2019.09.03
  • 심사 : 2019.12.12
  • 발행 : 2020.05.20

초록

This paper proposes a fault-tolerant control (FTC) strategy for an open-circuit fault (OCF) of a single IGBT in a two-parallel-connected three-phase AC-DC pulse-width-modulation (PWM) converter system. In the case of the parallel-connected PWM converter system, the OCF of the IGBT causes not only DC-link voltage fluctuation and grid current distortion, but also a zero-sequence circulating current (ZSCC). Although the effect of these problems can be reduced by existing FTC methods which is used in the single PWM converter, it is difficult to totally mitigate the problems due to the ZSCC. Therefore, this paper proposes a new FTC strategy to suppress the ZSCC using the healthy converter in the parallel-connected converter. First, it is analyzed how the difference in common-mode (CM) voltage between the two converters causes ZSCC flowing inside the parallel-connected converter under the fault condition. And then, the limitation of the existing control method for ZSCC is explained. To suppress the ZSCC using the healthy converter, the proposed control method uses a d-axis voltage injection of the healthy converter which does not affect an active power control. The effectiveness of the proposed FTC strategy is verified through experimental results.

키워드

과제정보

This work was supported by BK21PLUS, Creative Human Resource Development Program for IT Convergence.

참고문헌

  1. Blaabjerg, F., Iov, F., Kerekes, T., Teodorescu, R.: Trends in power electronics and control of renewable energy systems. In: Proc. 14th International Power Electronics and Motion Control Conference, pp. K-1-K-19 (2010)
  2. Kantar, E., Hava, A.M.: Optimal design of grid-connected voltage-source converters considering cost and operating factors. IEEE Trans. Ind. Electron. 63(9), 5336-5347 (2016) https://doi.org/10.1109/TIE.2016.2573759
  3. Gu, L., Jin, K.: A three-phase isolated bidirectional AC/DC converter and its modified SVPWM algorithm. IEEE Trans. Power Electron. 30(10), 5458-5468 (2015) https://doi.org/10.1109/TPEL.2014.2378274
  4. Davari, P., Zare, F., Blaabjerg, F.: Pulse pattern-modulated strategy for harmonic current components reduction in three-phase AC-DC converters. IEEE Trans. Ind. Appl. 52(4), 3182-3192 (2016) https://doi.org/10.1109/TIA.2016.2539922
  5. Li, Y., Fan, L.: Stability analysis of two parallel converters with voltage-current droop control. IEEE Trans. Power Deliv. 32(6), 2389-2397 (2017) https://doi.org/10.1109/TPWRD.2017.2656062
  6. Agorreta, J.L., Borrega, M., Lopez, J., Marroyo, L.: Modeling and control of N-paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants. IEEE Trans. Power Electron. 26(3), 770-785 (2011) https://doi.org/10.1109/TPEL.2010.2095429
  7. Siva Prasad, J.S., Narayanan, G.: Minimization of grid current distortion in parallel-connected converters through carrier interleaving. IEEE Trans. Ind. Electron. 61(1), 76-91 (2014) https://doi.org/10.1109/TIE.2013.2245620
  8. Simanjorang, R., Miura, Y., Ise, T., Sugimoto, S., Fujita, H.: Application of series type BTB converter for minimizing circulating current and balancing power transformers in loop distribution lines. In: 2007 Power Conversion Conference-Nagoya, pp. 997-1004 (2007)
  9. Zhang, P., Zhang, G., Du, H.: Circulating current suppression of parallel photovoltaic grid-connected converters. IEEE Trans. Circuits Syst. II Express Briefs 65(9), 1214-1218 (2018)
  10. Zhang, D., Wang, F., Burgos, R., Lai, R., Boroyevich, D.: Impact of interleaving on AC passive components of paralleled three-phase voltage-source converters. IEEE Trans. Ind. Appl. 46(3), 1042-1054 (2010) https://doi.org/10.1109/TIA.2010.2045336
  11. Gohil, G., Bede, L., Teodorescu, R., Kerekes, T., Blaabjerg, F.: An integrated inductor for parallel interleaved VSCs and PWM schemes for flux minimization. IEEE Trans. Ind. Electron. 62(12), 7534-7546 (2015) https://doi.org/10.1109/TIE.2015.2455059
  12. Ye, Z., Boroyevich, D., Choi, J.-Y., Lee, F.C.: Control of circulating current in two parallel three-phase boost rectifiers. IEEE Trans. Power Electron. 17(5), 609-615 (2002)
  13. Xueguang, Z., Wenjie, Z., Jiaming, C., Dianguo, X.: Deadbeat control strategy of circulating currents in parallel connection system of three-phase PWM converter. IEEE Trans. Energy Convers. 29(2), 406-417 (2014) https://doi.org/10.1109/TEC.2014.2297994
  14. Hou, C.: A multicarrier PWM for parallel three-phase active front-end converters. IEEE Trans. Power Electron. 28(6), 2753-2759 (2013) https://doi.org/10.1109/TPEL.2012.2220860
  15. Zhang, D., Fred Wang, F., Burgos, R., Boroyevich, D.: Common-mode circulating current control of paralleled interleaved three-phase two-level voltage-source converters with discontinuous space-vector modulation. IEEE Trans. Power Electron. 26(12), 3925-3935 (2011) https://doi.org/10.1109/TPEL.2011.2131681
  16. Maheshwari, R., Gohil, G., Bede, L., Munk-Nielsen, S.: Analysis and modelling of circulating current in two parallel-connected inverters. IET Power Electron. 8(7), 1273-1283 (2015) https://doi.org/10.1049/iet-pel.2014.0656
  17. Lu, B., Sharma, S.K.: A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Trans. Ind. Appl. 45(5), 1770-1777 (2009) https://doi.org/10.1109/TIA.2009.2027535
  18. Song, Y., Wang, B.: Survey on reliability of power electronic systems. IEEE Trans. Power Electron. 28(1), 591-604 (2013) https://doi.org/10.1109/TPEL.2012.2192503
  19. Im, W., Kim, J., Lee, D., Lee, K.: Diagnosis and fault-tolerant control of three-phase AC-DC PWM converter systems. IEEE Trans. Ind. Appl. 49(4), 1539-1547 (2013) https://doi.org/10.1109/TIA.2013.2255111
  20. Freire, N.M.A., Estima, J.O., Marques Cardoso, A.J.: Open-circuit fault diagnosis in PMSG drives for wind turbine applications. IEEE Trans. Ind. Electron. 60(9), 3957-3967 (2013) https://doi.org/10.1109/TIE.2012.2207655
  21. Estima, J.O., Marques Cardoso, A.J.: A new algorithm for real-time multiple open-circuit fault diagnosis in voltage-fed PWM motor drives by the reference current errors. IEEE Trans. Ind. Electron. 60(8), 3496-3505 (2013) https://doi.org/10.1109/TIE.2012.2188877
  22. Choi, U., Jeong, H., Lee, K., Blaabjerg, F.: Method for detecting an open-switch fault in a grid-connected NPC inverter system. IEEE Trans. Power Electron. 27(6), 2726-2739 (2012) https://doi.org/10.1109/TPEL.2011.2178435
  23. Lee, J., Lee, K.: An open-switch fault detection method and tolerance controls based on SVM in a grid-connected T-type rectifier with unity power factor. IEEE Trans. Ind. Electron. 61(12), 7092-7104 (2014) https://doi.org/10.1109/TIE.2014.2316228
  24. Jung, J., Ku, H., Son, Y., Kim, J.: Open-switch fault diagnosis algorithm and tolerant control method of the three-phase three-level NPC active rectifier. Energies 12(13), 2495 (2019) https://doi.org/10.3390/en12132495
  25. Park, J., Jung, J., Kim, J., Son, Y.: Fault tolerant control of three phase 2-parallel AC/DC PWM converter systems. In: Proc. 2017 IEEE 3rd International Future Energy Electron. Conf. (IFEEC), pp. 846-851 (2017)

피인용 문헌

  1. Switch Open-Fault Detection for a Three-Phase Hybrid Active Neutral-Point-Clamped Rectifier vol.9, pp.9, 2020, https://doi.org/10.3390/electronics9091437
  2. Open-Circuit Fault Tolerance Method for Three-Level Hybrid Active Neutral Point Clamped Converters vol.9, pp.9, 2020, https://doi.org/10.3390/electronics9091535
  3. A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on Cri Markers vol.14, pp.12, 2020, https://doi.org/10.3390/en14123443