DOI QR코드

DOI QR Code

Boost-type push-pull converter with reduced switches

  • 투고 : 2019.12.11
  • 심사 : 2020.02.03
  • 발행 : 2020.05.20

초록

This paper develops and analyses a boost-type push-pull converter with a reduced number of switches. The newly designed converter mainly consists of five diodes, two switches, two inductors, a transformer and two capacitors. By tuning the duty cycle and the transformer ratio, different voltage gains of the proposed converter can be obtained. It is notable for its electrical isolation characteristics. When compared with traditional step-up converters, the step-up module and converter module share the same switch. In addition, the control of the converter becomes easier to implement, and it has better stability and a reduced volume. It should be mentioned that the number of switches in the proposed converter is decreased but maintains the same voltage stress when compared to the traditional structure. The operating principle of proposed converter is demonstrated, which is followed by the design of the component parameters. To validate the feasibility of the proposed topology, an experimental prototype is constructed to verify its correctness and practicability of the proposed converter when compared with the conventional converter.

키워드

참고문헌

  1. Thale, S.S., Wandhare, R.G., Agarwal, V.: A novel reconfigurable microgrid architecture with renewable energy sources and storage. IEEE Trans. Ind. Appl. 51(2), 1805-1816 (2014) https://doi.org/10.1109/TIA.2014.2350083
  2. Verzijlbergh, R.A., De Vries, L.J., Lukszo, Z.: Renewable energy sources and responsive demand. Do we need congestion management in the distribution grid? IEEE Trans. Power Syst. 29(5), 2119-2128 (2014) https://doi.org/10.1109/tpwrs.2014.2300941
  3. Bose, B.K.: Energy, environment, and advances in power electronics. In: ISIE'2000, Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No. 00TH8543), vol. 1. pp. TU1-T14. IEEE (2000)
  4. Tseng, K.-C., Huang, C.-C.: High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system. IEEE Trans. Ind. Electron. 61(3), 1311-1319 (2013) https://doi.org/10.1109/TIE.2013.2261036
  5. Meneses, F., Blaabjerg, O.Garcia, Cobos, J.A.: Review and comparison of step-up transformerless topologies for photovoltaic ac-module application. IEEE Trans. Power Electron. 28(6), 2649-2663 (2012) https://doi.org/10.1109/TPEL.2012.2227820
  6. Li, W., He, X.: Review of nonisolated high-step-up dc/dc converters in photovoltaic grid-connected applications. IEEE Trans. Ind. Electron. 58(4), 1239-1250 (2010) https://doi.org/10.1109/TIE.2010.2049715
  7. Chen, X., Xi, L., Zhang, Y., Ma, H., Huang, Y., Chen, Y.: Fractional techniques to characterize non-solid aluminum electrolytic capacitors for power electronic applications. Nonlinear Dyn. 98(4), 3125-3141 (2019) https://doi.org/10.1007/s11071-019-05364-0
  8. Zhang, G., Li, Z., Zhang, B., Halang, W.A.: Power electronics converters: past, present and future. Renew. Sustain. Energy Rev. 81, 2028-2044 (2018) https://doi.org/10.1016/j.rser.2017.05.290
  9. Zhu, B., Ding, F., Vilathgamuwa, D.M.: Coat circuits for dc-dc converters to improve voltage conversion ratio. IEEE Trans. Power Electron. 35(4), 3679-3687 (2019) https://doi.org/10.1109/tpel.2019.2934726
  10. Zhang, G., Wang, Z., Iu, H.H.-C., Chen, S.-Z., Ye, Y., Zhang, B., Zhang, Y.: Unique modular structure of multicell high-boost converters with reduced component currents. IEEE Trans. Power Electron. 33(9), 7795-7804 (2017) https://doi.org/10.1109/tpel.2017.2770149
  11. Zhang, G., Wang, Z., Yu, S.S., Chen, S.-Z., Zhang, B., Iu, H.H.-C., Zhang, Y.: A generalized additional voltage pumping solution for high- step-up converters. IEEE Trans. Power Electron. 34(7), 6456-6467 (2018) https://doi.org/10.1109/tpel.2018.2874006
  12. Chen, J., Wang, C., Li, J.: Single-phase step-up five-level inverter with phase-shifted pulse width modulation. J. Power Electron. 19(1), 134-145 (2019) https://doi.org/10.6113/JPE.2019.19.1.134
  13. Fani, R., Farshidi, E., Adib, E., Kosarian, A.: Analysis and implementation of high step-up dc/dc convertor with modified super-lift. J. Power Electron. 19(3), 645-654 (2019) https://doi.org/10.6113/JPE.2019.19.3.645
  14. Arshadi, S.A., Poorali, B., Adib, E., Farzanehfard, H.: High step-up dc-ac inverter suitable for ac module applications. IEEE Trans. Ind. Electron. 63(2), 832-839 (2015) https://doi.org/10.1109/TIE.2015.2480387
  15. Deng, Y., Rong, Q., Li, W., Zhao, Y., Shi, J., He, X.: Single-switch high step-up converters with built-in transformer voltage multiplier cell. IEEE Trans. Power Electron. 27(8), 3557-3567 (2012) https://doi.org/10.1109/TPEL.2012.2183620
  16. Tseng, K.-C., Chen, C.-T., Cheng, C.-A.: A high-efficiency high step-up interleaved converter with a voltage multiplier for electric vehicle power management applications. J. Power Electron. 16(2), 414-424 (2016) https://doi.org/10.6113/JPE.2016.16.2.414
  17. Liu, V.T., Zhang, L.J.: Design of high efficiency boost-forward-flyback converters with high voltage gain. In: 11th IEEE International Conference on Control and Automation (ICCA), pp. 1061-1066. IEEE (2014)
  18. Chen, S.-M., Liang, T.-J., Yang, L.-S., Chen, J.-F.: A cascaded high step-up dc-dc converter with single switch for microsource applications. IEEE Trans. Power Electron. 26(4), 1146-1153 (2010) https://doi.org/10.1109/TPEL.2010.2090362
  19. Yu, D., Yang, J., Xu, R., Xia, Z., Iu, H.H.-C., Fernando, T.: A family of module-integrated high step-up converters with dual coupled inductors. IEEE Access 6, 16256-16266 (2018) https://doi.org/10.1109/access.2018.2815148
  20. Kaliamoorthy, M., Sekar, R., Raj, I.G.C.: Solar powered single stage boost inverter with ann based mppt algorithm. In: 2010 International Conference On Communication Control And Computing Technologies, pp. 165-170. IEEE (2010)
  21. Pan, C.-T., Lai, C.-M., Cheng, M.-C.: A novel high step-up ratio inverter for distributed energy resources (DERS). In: The 2010 International Power Electronics Conference-ECCE ASIA, pp. 1433-1437. IEEE (2010)
  22. Kim, D.-H., Kim, H.-W., Park, J.-H., Jeon, H.-J.: High efficiency high-step-up single-ended dc-dc converter with small output voltage ripple. J. Power Electron. 15(6), 1468-1479 (2015) https://doi.org/10.6113/JPE.2015.15.6.1468
  23. Dixon, R., Dementyev Yu, N., Mikhalchenko G, Y., Mikhalchenko SG, Y., Semenov, S.M.: dynamic properties of a two phase boost converter with soft switching transistors technology. Bull. Tomsk Polytech. Univ. 324(4), 96-101 (2014)
  24. Waffler, S., Kolar, J.W.: A novel low-loss modulation strategy for high-power bidirectional buck + boost converters. IEEE Trans. Power Electron. 24(6), 1589-1599 (2009) https://doi.org/10.1109/TPEL.2009.2015881
  25. Osipov, A.V., Lopatin, A.A., Latypov, R.A., Shemolin, I.S.: Soft switching stacked-up boost push-pull converter. In: 2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), pp. 148-151. IEEE (2018)
  26. Corradini, L., Seltzer, D., Bloomquist, D., Zane, R., Maksimovic, D., Jacobson, B.: Minimum current operation of bidirectional dual-bridge series resonant dc/dc converters. IEEE Trans. Power Electron. 27(7), 3266-3276 (2011) https://doi.org/10.1109/TPEL.2011.2181421
  27. Osipov, A.V., Yaroslavtsev, E.V., Burkin, E.Y., Sviridov, V.V.: Boost type series resonant converter with flexible structure for power supplies. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 329(2), 27-37 (2018)
  28. Zhu, B., Zeng, Q., Chen, Y., Zhao, Y., Liu, S.: A dual-input high step-up dc/dc converter with zvt auxiliary circuit. IEEE Trans. Energy Convers. 34(1), 161-169 (2018) https://doi.org/10.1109/tec.2018.2876303