DOI QR코드

DOI QR Code

Double-voltage vector-based model predictive control for three-phase grid-connected AC/DC converters

  • Guo, Leilei (School of Electrical and Information Engineering, Zhengzhou University of Light Industry) ;
  • Zhang, Kaixuan (School of Electrical and Information Engineering, Zhengzhou University of Light Industry) ;
  • Li, Yanyan (School of Electrical and Information Engineering, Zhengzhou University of Light Industry) ;
  • Jin, Nan (School of Electrical and Information Engineering, Zhengzhou University of Light Industry)
  • Received : 2019.02.22
  • Accepted : 2019.09.10
  • Published : 2020.01.20

Abstract

This paper presents a double-vector-based model predictive control method for three-phase grid-connected AC/DC converters. The conventional model predictive control (MPC) presents high steady-state ripples due to the application of only one voltage vector during one control period. To reduce the current ripples, a new MPC method is proposed. Double-voltage vectors are selected and applied it each control period in the proposed method. To reduce the calculation burden, the duration time of each voltage vector is calculated based on the principle of modulated MPC. Furthermore, the effectiveness of the proposed double-voltage vector-based MPC strategy is analyzed in theory for the first time. Then, it is further verified by comparative experiment studies.

Keywords

Acknowledgement

This research was supported in part by the National Natural Science Foundation of China (Nos. 51707176, 51607159), in part by the Key Scientific Research Project in Universities of Henan Province (Nos. 18A470020, 20A470011), and in part by the Doctoral Foundation of Zhengzhou University of Light Industry (Nos. 2016BSJJ003).

References

  1. Eren, S., Pahlevani, M., Bakhshai, A., Jain, P.: A digital current control technique for grid-connected AC/DC converters used for energy storage systems. IEEE Trans. Power Electron. 32(5), 3970-3988 (2017) https://doi.org/10.1109/TPEL.2016.2582901
  2. Tang, Y., Yao, W., Loh, P.C., Blaabjerg, F.: Design of LCL filters with LCL resonance frequencies beyond the Nyquist frequency for grid-connected converters. J Emerg Sel Top Power Electron 4(1), 3-14 (2016) https://doi.org/10.1109/JESTPE.2015.2455042
  3. Yang, Y., Zhou, K., Blaabjerg, F.: Enhancing the frequency adaptability of periodic current controllers with a fixed sampling rate for grid-connected power converters. IEEE Trans. Power Electron. 31(10), 7273-7285 (2016) https://doi.org/10.1109/TPEL.2015.2507545
  4. Liu, H.L., Cho, G.H.: Three-level space vector PWM in low index modulation region avoiding narrow pulse problem. IEEE Trans. Power Electron. 9(5), 481-486 (1994) https://doi.org/10.1109/63.321033
  5. Chen, M., Sun, D.: A unified space vector pulse width modulation for dual two-level inverter system. IEEE Trans. Power Electron. 32(2), 889-893 (2017) https://doi.org/10.1109/TPEL.2016.2585223
  6. Wang, W., Luo, A., Xu, X., Fang, L., Chau, T.M., Li, Z.: Space vector pulse-width modulation algorithm and DC-side voltage control strategy of three-phase four-switch active power filters. IET Power Electron 6(1), 125-135 (2013) https://doi.org/10.1049/iet-pel.2012.0391
  7. Fan, X., Zhang, Q., Ren, J.: Event-triggered sliding mode control for discrete-time singular system. IET Control Theory Appl. 12(17), 2390-2398 (2018) https://doi.org/10.1049/iet-cta.2018.5239
  8. Liu, F., Li, Y., Cao, Y., She, J., Wu, M.: A two-layer active disturbance rejection controller design for load frequency control of interconnected power system. IEEE Trans. Power Syst. 31(4), 3320-3321 (2016) https://doi.org/10.1109/TPWRS.2015.2480005
  9. Lin, L., Gau, T.: Feedback linearization and fuzzy control for conical magnetic bearings. IEEE Trans. Control Syst. Technol. 5(4), 417-426 (1997) https://doi.org/10.1109/87.595923
  10. Guo, L., Zhang, X., Yang, S., Xie, Z., Cao, R.: A model predictive control-based common-mode voltage suppression strategy for voltage-source inverter. IEEE Trans. Ind. Electron. 63(10), 6115-6125 (2016) https://doi.org/10.1109/TIE.2016.2574980
  11. Guo, L., Jin, N., Gan, C., Xu, L.: An improved model predictive control strategy to reduce common-mode voltage for 2-level voltage source inverters considering dead time effects. IEEE Trans Ind Electron (2018). https://doi.org/10.1109/tie.2018.2856194. (early access)
  12. Cortes, P., Rodriguez, J., Silva, C., Flores, A.: Delay compensation in model predictive current control of a three-phase inverter. IEEE Trans Ind Electron 59(2), 1323-1325 (2012) https://doi.org/10.1109/TIE.2011.2157284
  13. Guo, L., Jin, N., Gan, C., Xu, L., Wang, Q.: An improved model predictive control strategy to reduce common-mode voltage for two-level voltage source inverters considering dead-time effects. IEEE Trans. Ind. Electron. 66(5), 3561-3572 (2019) https://doi.org/10.1109/tie.2018.2856194
  14. Zhang, Y., Li, Z., Zhang, Y., Xie, W., Piao, Z., Hu, C.: Performance improvement of direct power control of PWM rectifier with simple calculation. IEEE Trans. Power Electron. 28(7), 3428-3437 (2013) https://doi.org/10.1109/TPEL.2012.2222050
  15. Zhang, Y., Qu, C.: Model predictive direct power control of PWM rectifiers under unbalanced network conditions. IEEE Trans. Ind. Electron. 62(7), 4011-4022 (2015) https://doi.org/10.1109/TIE.2014.2387796
  16. Zhang, Y., Xie, W., Li, Z., Zhang, Y.: Low-complexity model predictive power control: double-vector-based approach. IEEE Trans. Ind. Electron. 61(11), 5871-5880 (2014) https://doi.org/10.1109/TIE.2014.2304935
  17. Mahmoudi, H., Aleenejad, M., Ahmadi, R.: Modulated model predictive control of modular multilevel converters in VSC-HVDC systems. IEEE Trans. Power Deliv. 33(5), 2115-2124 (2018) https://doi.org/10.1109/tpwrd.2017.2727478
  18. Li, X., Peng, T., Dan, H., Zhang, G., Tang, W., Wheeler, P.: A modulated model predictive control scheme for the brushless doubly fed induction machine. J Emerg Select Top Power Electron 6(4), 1681-1691 (2018)
  19. Tarisciotti, L., Formentini, A., Gaeta, A., Degano, M., Zanchetta, P., Rabbeni, R., Pucci, M.: Model predictive control for shunt active filters with fixed switching frequency. IEEE Trans. Ind. Appl. 53(1), 296-304 (2017) https://doi.org/10.1109/TIA.2016.2606364
  20. Xia, C., Liu, T., Shi, T., et al.: A simplified finite-control-set model-predictive control for power converters. IEEE Trans Ind Inf 10(2), 991-1002 (2014) https://doi.org/10.1109/TII.2013.2284558

Cited by

  1. Development of PCS to utilize differential pressure energy in district heating systems with reduced DC-link voltage variation vol.20, pp.4, 2020, https://doi.org/10.1007/s43236-020-00091-x