DOI QR코드

DOI QR Code

Averaged current mode control for maximum power point tracking in high-gain photovoltaic applications

  • 투고 : 2019.12.20
  • 심사 : 2020.08.31
  • 발행 : 2020.11.20

초록

Efficient extraction of the maximum power from photovoltaic (PV) systems under inherently variable weather conditions is a key issue that has been tackled in recent years. Maximum power extraction techniques are relevant for increasing the penetration of PV systems into electric systems. This paper presents an averaged current mode control strategy as a maximum power extraction technique in a photovoltaic high step-up dc-dc converter, which can be applied to dc microgrids or ac networks through power inverters. Since the generated power of a photovoltaic system is related to the terminal voltage, power extraction is given through the regulation of the converter's input voltage. For this purpose, in the proposed averaged current mode control, the inner current loop uses the inductor current as a feedback signal, which improves the dynamic behavior of the converter with a simple gain. Meanwhile, the outer voltage loop is built with a proportional-integrative controller for regulation. The converter and control strategy are able to track rapid irradiance changes. They are also able to maintain the photovoltaic voltage regulation under dc bus voltage variations. The performance of the proposed control scheme is validated experimentally with a 100 W converter prototype.

키워드

과제정보

This research was supported by CONACYT, Mexico, under project 1982 of Catedras CONACYT.

참고문헌

  1. Dubey, S., Narotam-Sarvaiya, J., Seshadri, B.: Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world-a review. Energy Procedia 33, 311-321 (2013) https://doi.org/10.1016/j.egypro.2013.05.072
  2. Zhang, M., Chen, Z., Wei, L.: An immune frefly algorithm for tracking the maximum power point of PV array under partial shading conditions. Energies 12(16), 3083 (2019) https://doi.org/10.3390/en12163083
  3. Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439-449 (2007) https://doi.org/10.1109/TEC.2006.874230
  4. Gomes-de-Brito, M.A., Galotto, L., Poltronieri-Sampaio, L., de Azevedo-e-Melo, G., Canesin, C.A.: Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans. Ind. Electron. 60(3), 1156-1167 (2013) https://doi.org/10.1109/TIE.2012.2198036
  5. Bendib, B., Belmili, H., Krim, F.: A survey of the most used MPPT methods: conventional and advanced algorithms applied for photovoltaic systems. Renew. Sustain. Energy Rev. 45, 637-648 (2015) https://doi.org/10.1016/j.rser.2015.02.009
  6. Bianconi, E., Calvente, J., Giral, R., Mamarelis, E., Petrone, G., Ramos-Paja, C.A., Spagnuolo, G., Vitelli, M.: A fast current-based MPPT technique employing sliding mode control. IEEE Trans. Ind. Electron. 60(3), 1168-1178 (2013) https://doi.org/10.1109/TIE.2012.2190253
  7. Femia, N., Petrone, G., Spagnuolo, G., Vitelli, M.: Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron. 20(4), 963-973 (2005) https://doi.org/10.1109/TPEL.2005.850975
  8. Xiao, W., Dunford, W.G., Palmer, P.R., Capel, A.: Application of centered diferentiation and steepest descent to maximum power point tracking. IEEE Trans. Ind. Electron. 54(5), 2539-2549 (2007) https://doi.org/10.1109/TIE.2007.899922
  9. Baekhoej Kjaer, S., Pedersen, J.K., Blaabjerg, F.: A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 41(5), 1292-1306 (2005) https://doi.org/10.1109/TIA.2005.853371
  10. Petrone, G., Spagnuolo, G., Vitelli, M.: An analog technique for distributed MPPT PV applications. IEEE Trans. Ind. Electron. 59(12), 4713-4722 (2012) https://doi.org/10.1109/TIE.2011.2177613
  11. Espinoza-Trejo, D.R., Barcenas-Barcenas, E., Campos-Delgado, D.U., De Angelo, C.H.: Voltage-oriented input-output linearization controller as maximum power point tracking technique for photovoltaic systems. IEEE Trans. Ind. Electron. 62(6), 3499-3507 (2015) https://doi.org/10.1109/TIE.2014.2369456
  12. Tchoketch, G.F., Larbes, C., Ilinca, A., Obeidi, T., Tchoketch, S.: Study of the intelligent behaviour of a maximum photovoltaic energy tracking fuzzy controller. Energies 11(12), 3263 (2018) https://doi.org/10.3390/en11123263
  13. Gil-Antonio, L., Saldivar, B., Portillo-Rodriguez, O., AvilaVilchis, J.C., Martinez-Rodriguez, P.R.: Flatness-based control for the maximum power point tracking in a photovoltaic system. Energies 12(10), 1843 (2019) https://doi.org/10.3390/en12101843
  14. Ali, K., Khan, L., Khan, Q., Ulla, S., Ahmad, S., Mumtaz, S., Wahab, F., Naghmash, : Robust integral backstepping based nonlinear MPPT control for a PV system. Energies 12(16), 3180 (2019) https://doi.org/10.3390/en12163180
  15. Bani-Salim, M., Hayajneh, H.S., Mohammed, A., Ozcelik, S.: Robust direct adaptative controller design for photovoltaic maximum power point tracking application. Energies 12(16), 3182 (2019) https://doi.org/10.3390/en12163182
  16. Li, W., Xiang, X., Li, C., Li, W., He, X.: Interleaved high step-up ZVT converter with built-in transformer voltage doubler cell for distributed PV generation system. IEEE Trans. Power Electron. 28(1), 300-313 (2013) https://doi.org/10.1109/TPEL.2012.2199771
  17. Choi, H., Ciobotaru, M., Jang, M., Agelidis, V.G.: Performance of medium-voltage DC-bus PV system architecture utilizing high-gain DC-DC converter. IEEE Trans. Sustain. Energy 6(2), 464-473 (2015) https://doi.org/10.1109/TSTE.2014.2382690
  18. Wong, Y.S., Chen, J.F., Liu, K.B., Hsieh, Y.P.: A novel high step-up DC-DC converter with coupled inductor and switched clamp capacitor techniques for photovoltaic systems. Energies 10(3), 378 (2017) https://doi.org/10.3390/en10030378
  19. Frivaldsky, M., Hanko, B., Prazenica, M., Morgos, J.: High gain boost interleaved converters with coupled inductors and with demagnetizing circuits. Energies 11(1), 130 (2018) https://doi.org/10.3390/en11010130
  20. Altin, N., Ozturk, E.: Maximum power point tracking quadratic boost converter for photovoltaic systems. In: IEEE Electronics, Computers and Artifcial Intelligence International Conference, pp 35-38 (2016)
  21. Ozdemir, S., Altin, N., Sefa, I.: Fuzzy logic based MPPT controller for high conversion ratio quadratic boost converter. Int. J. Hydrog. Energy 42(28), 17748-17759 (2017) https://doi.org/10.1016/j.ijhydene.2017.02.191
  22. Yuang-Shung, L., Tzu-Han, C., Ling-Chia, Y., Hsin-Wei, H.: Quadratic high gain boost converter for grid-tie PV system application. In: 1st International Future Energy Electronics Conference, pp 382-387 (2013)
  23. Amir, A., Seng-Che, H., Elkhateb, A., Abd-Rahim, N.: Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems. Renew. Energy 136, 1147-1163 (2019) https://doi.org/10.1016/j.renene.2018.09.089
  24. Boroyevich, D., Cvetkovic, I., Dong, D., Burgos, R., Wang, F., Lee, F.: Future electronic power distribution systems - a contemplative view. In:12th International Conference on Optimization of Electrical and Electronic Equipment, pp 1369-1380 (2010)
  25. Ahmadi, R., Ferdowsi, M.: Improving the performance of a line regulating converter in a converter-dominated dc microgrid system. IEEE Trans. Smart Grid 5(5), 2553-2563 (2014) https://doi.org/10.1109/TSG.2014.2319267
  26. Villalva, M.G., Gazoli, J.R., Filho, E.R.: Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198-1208 (2009) https://doi.org/10.1109/TPEL.2009.2013862
  27. Loera-Palomo, R., Morales-Saldana, J.A.: Family of quadratic step-up dc-dc converters based on noncascading structures. IET Power Electron. 8(5), 793-801 (2015) https://doi.org/10.1049/iet-pel.2013.0879
  28. Ismail, E.H., Al-Safar, M.A., Sabzali, A.J., Fardoun, A.A.: A family of single-switch PWM converters with high step-up convertion ratio. IEEE Trans. Circuits Syst. 55(4), 1159-1171 (2008)
  29. Carbajal-Gutierrez, E.E., Morales-Saldana, J.A., Leyva-Ramos, J.: Modeling of a single-switch quadratic buck converter. IEEE Trans. Aerosp. Electron. Syst. 41(4), 1451-1457 (2005)
  30. Loera-Palomo, R., Morales-Saldana, J.A., Leyva-Ramos, J.: Signal fow graphs for modelling of switching converters with reduced redundant power processing. IET Power Electron. 5(7), 1008-1016 (2012) https://doi.org/10.1049/iet-pel.2012.0038
  31. Viinamaki, J., Jokipii, J., Messo, T., Suntio, T., Sitbon, M., Kuperman, A.: Comprehensive dynamic analysis of photovoltaic generator interfacing dc-dc boost power stage. IET Renew. Power Gener. 9(4), 306-314 (2015) https://doi.org/10.1049/iet-rpg.2014.0149
  32. Puukko, J., Nousiainen, L., Maki, A., Messo, T., Huusari, J., Suntio, T.: Photovoltaic generator as an input source for power electronic converters. In: 15th International Power Electronics and Motion Control Conference, pp 1-8 (2012)

피인용 문헌

  1. Noncascading Quadratic Buck-Boost Converter for Photovoltaic Applications vol.12, pp.8, 2021, https://doi.org/10.3390/mi12080984
  2. Compound control strategy for maximum power point tracking with flexible step-up converters for thin film photovoltaic module applications vol.21, pp.9, 2020, https://doi.org/10.1007/s43236-021-00269-x