DOI QR코드

DOI QR Code

Capacitor voltage feedforward decoupling control based on third harmonic injection modulation for five-level active neutral point clamped converter

  • Nie, Ziling (National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering) ;
  • Ye, Weiwei (National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering) ;
  • Zhu, Junjie (National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering) ;
  • Xu, Jie (National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering)
  • Received : 2020.01.06
  • Accepted : 2020.08.23
  • Published : 2020.11.20

Abstract

For the five-level active neutral point clamped (5L-ANPC) converter, the coupling problem between the DC-link capacitor voltages and flying-capacitor (FC) voltages will increase the capacitor voltage fluctuations. The capacitor voltage fluctuations and current harmonics of the space vector pulse width modulation (SVPWM) are less than those of the sinusoidal pulse width modulation (SPWM), because the maximum linear modulation index of the SVPWM is higher than that of the SPWM. However, SVPWM has difficulty in realizing the decoupling control of the capacitor voltages, and the computation complexity of SVPWM is much higher than that of SPWM. This paper proposes a third harmonic injection modulation algorithm for the 5L-ANPC converter. The proposed algorithm injects the third harmonic into the modulation waves of SPWM, which makes the maximum linear modulation index of SPWM the same as that of SVPWM, to reduce the capacitor voltage fluctuations and current harmonics. The calculation of the third harmonic only requires a standard sorting algorithm and a simple linear operation; thus, it is easy to implement. Based on the third harmonic injection modulation algorithm, two variables are introduced to control the neutral point (NP) current and the FC current. And the two variables are used to feedforward compensate the modulation waves, realizing the decoupling control of the capacitor voltages. The proposed decoupling control method can further reduce the capacitor voltage fluctuations. Experimental results are presented to verify the validity of the proposed algorithm.

Keywords

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant no. 51807199).

References

  1. Kouro, S., Rodriguez, J., Wu, B., Bernet, S., Perez, M.: Powering the future of industry: high-power adjustable speed drive topologies. IEEE Ind. Appl. Mag. 18(4), 26-39 (2012) https://doi.org/10.1109/MIAS.2012.2192231
  2. Peng, F.Z., Qian, W., Cao, D.: Recent advances in multilevel converter/inverter topologies and applications. 2010 Int. Power Electron. Conf. 2010, 492-501 (2010)
  3. Barbosa, P., Steimer, P., Steinke, J., et al.: Active neutral-point-clamped multilevel converters. IEEE Annu. Power Electron. Special. Conf. 2005, 2296-2301 (2005)
  4. Kouro, S., Mailnowski, M., Gopakumar, K., et al.: Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2553-2580 (2010) https://doi.org/10.1109/TIE.2010.2049719
  5. Kiefernforf, F., Basler, M., Serpa, L.A., et al.: 5L-ANPC technology applied to medium voltage variable speed drives applications. Int. Symp. Power Electron. Electr. Drives Autom. Motion 2010, 1718-1725 (2010)
  6. Serpa, L.A., Barbosa, P.M., Steimer, P.K., et al.: Five-level virtual-flux direct power control for the active neutral-point clamped multilevel inverter. IEEE Power Electron. Special. Conf. 2008, 1668-1674 (2008)
  7. Marzoughi, A., Burgos, R., Boroyevich, D., et al.: Design and comparison of cascaded H-bridge, modular multilevel converter, and 5-L active neutral point clamped topologies for motor driven application. IEEE Trans. Ind. Appl. 54(2), 1404-1413 (2018)
  8. Teymour, H.R., Sutanto, D., Muttaqi, K.M., et al.: Novel modulation and control strategy for five-level ANPC converter with unbalanced DC voltage applied to a single-phase grid connected PV system. Industry Appl. Soc. Meet. 2013, 1-8 (2013)
  9. Liu, D., Deng, F., Chen, Z.: Five-level active-neutral-point-clamped dc/dc converters for medium voltage dc grid. IEEE Trans. Power Electron. 32(5), 3402-3412 (2017) https://doi.org/10.1109/TPEL.2016.2585618
  10. Wang, K., Xu, L., Zheng, Z., et al.: Capacitor voltage balancing of a five-level ANPC converter using phase-shifted PWM. IEEE Trans. Power Electron. 30(3), 1147-1156 (2015) https://doi.org/10.1109/TPEL.2014.2320985
  11. Wang, K., Zheng, Z., Li, Y., Liu, K., Shang, J.: Neutral-point potential balancing of a five-level active neutral-point-clamped inverter. IEEE Trans. Ind. Electron. 60(5), 1907-1918 (2013) https://doi.org/10.1109/TIE.2012.2227898
  12. Li, J., Jiang, J.: Active voltage-balancing control methods for the foating capacitors and DC-link capacitors of five-level active neutral-point-clapmed converter. J. Power Electron. 17(3), 653-663 (2017) https://doi.org/10.6113/JPE.2017.17.3.653
  13. Fusheng, W., Deyou, Z., Jianging, W., et al.: Optimized decoupling control of flying capacitor in ANPC five-level inverter. Int. Power Electron. Conf. 2018, 2611-2618 (2018)
  14. Yao, W., Hu, H., Lu, Z.: Comparisons of space-vector modulation and carrier-based modulation of multilevel inverter. IEEE Trans. Power Electron. 23(1), 45-51 (2008) https://doi.org/10.1109/TPEL.2007.911865
  15. Chen, J., He, Y., Hasan, S.U., Liu, J.: A comprehensive study on equivalent modulation waveforms of the SVPWM sequence for three-level inverters. IEEE Trans. Power Electron. 30(12), 7149-7158 (2015) https://doi.org/10.1109/TPEL.2015.2391096
  16. Li, B., Li, L., Li, L., Jin, S.: Multidimensional space-vector PWM algorithm using branch space voltage vector. IEEE Trans. Power Electron. 31(12), 8517-8527 (2016) https://doi.org/10.1109/TPEL.2016.2520952
  17. Wu, X., Tan, G., Ye, Z., et al.: Virtual-space-vector PWM for three-level neutral-point-clamped inverter with unbalanced DC-links. IEEE Trans. Power Electron. 33(3), 2630-2642 (2017) https://doi.org/10.1109/TPEL.2017.2692272
  18. Deng, Y., Wang, Y., Teo, K.H., Harley, R.G.: A simplifed space vector modulation scheme for multilevel converters. IEEE Trans. Power Electron. 31(3), 1873-1886 (2016) https://doi.org/10.1109/TPEL.2015.2429595
  19. Ahmed, V., Borghate, B., Matsa, A., Meshram, P.M., Suryawanshi, H.M., Chaudhari, M.A.: Simplified space vector modulation techniques for multilevel inverters. IEEE Trans. Power Electron. 31(12), 8483-8499 (2016) https://doi.org/10.1109/TPEL.2016.2520078
  20. Le, Q.A., Lee, D.: Reduction of common-mode voltages for five-level active NPC inverters by the space-vector modulation technique. IEEE Trans. Industry Appl. 53(2), 1289-1299 (2017) https://doi.org/10.1109/TIA.2016.2640200
  21. Le, Q.A., Lee, D.: Elimination of common-mode voltages based on modified SVPWM in five-level ANPC inverters. IEEE Trans. Power Electron. 34(1), 173-183 (2019) https://doi.org/10.1109/TPEL.2018.2825230
  22. Liu, Z., Wang, Y., Tan, G., et al.: A novel SVPWM algorithm for five-level active neutral-point-clamped converter. IEEE Trans. Power Electron. 31(5), 3859-3866 (2016) https://doi.org/10.1109/TPEL.2015.2462124
  23. Tan, G., Deng, Q., Liu, Z.: An optimized SVPWM strategy for five-level active NPC (5L-ANPC) converter. IEEE Trans. Power Electron. 29(1), 386-395 (2014) https://doi.org/10.1109/TPEL.2013.2248172
  24. Li, C., Wang, S., Guan, Q., Xu, D.: Hybrid modulation concept for five-level active-neutral-point-clamped converter. IEEE Trans. Power Electron. 32(12), 8958-8962 (2017) https://doi.org/10.1109/TPEL.2017.2699948
  25. Hava, M., Kerkman, R.J., Lipo, T.A.: Simple analytical and graphical methods for carrier-based PWM-VSI drives. IEEE Trans. Power Electron. 14(1), 49-61 (1999) https://doi.org/10.1109/63.737592
  26. Dao, N.D., Lee, D.: Operation and control scheme of a five-level hybrid inverter for medium-voltage motor drives. IEEE Trans. Power Electron. 33(12), 10178-10187 (2018) https://doi.org/10.1109/TPEL.2018.2811182