DOI QR코드

DOI QR Code

A bidirectional DC/DC converter with wide-voltage gain range and low-voltage stress for hybrid-energy storage systems in electric vehicles

  • Wang, Zhishuang (School of Electrical and Information Engineering, Tianjin University) ;
  • Wang, Ping (School of Electrical and Information Engineering, Tianjin University) ;
  • Bi, Huakun (School of Electrical and Information Engineering, Tianjin University) ;
  • Qiu, Mingjie (School of Electrical and Information Engineering, Tianjin University)
  • Received : 2019.07.10
  • Accepted : 2019.09.21
  • Published : 2020.01.20

Abstract

In this paper, a bidirectional non-isolated DC/DC converter for hybrid energy storage systems has been proposed. The converter is constituted by the integration of two conventional two-level topologies, with a parallel connection on their low-voltage sides (LVSs) and a series connection on their high-voltage sides (HVSs). Thus, a high-voltage gain can be achieved, along with the low-voltage stresses on power switches and capacitors. In addition, by establishing a higher charging/discharging voltage in the step-up/down mode on the inductor, the voltage gain range can be further extended. Furthermore, the operating principles, characteristics analysis, and comparisons with other converters are presented in detail. Finally, a 400 W prototype has been fabricated to further validate the feasibility and correctness of the theoretical analyses. The LVS voltage range is 20-60 V, while the HVS voltage is 200 V. The resulting voltage gain range is from 3.34 to 10. Moreover, the converter achieves high efficiency in bidirectional operations. The maximum efficiencies are 95.7% in the step-up mode and 95.9% in the step-down mode.

Keywords

Acknowledgement

This work was supported by basic research program of Qinghai province, China (2018-ZJ-764).

References

  1. Khaligh, A., Li, Z.: Battery, ultracapacitor, fuel-cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state-of-art. IEEE Trans. Veh. Technol. 59(6), 2806-2814 (2010) https://doi.org/10.1109/TVT.2010.2047877
  2. Ellabban, O., Abu-Rub, H., Blaabjerg, F.: Renewable energy resources: current status, future prospects and technology. Renew. Sustain. Energy Rev. 39, 748-764 (2014) https://doi.org/10.1016/j.rser.2014.07.113
  3. Zheng, C., Li, W., Liang, Q.: An energy management strategy of hybrid energy storage systems for electric vehicle applications. IEEE Trans. Sustain. Energy 9(4), 1880-1888 (2018) https://doi.org/10.1109/tste.2018.2818259
  4. Wang, Bin, Wang, Chaohui, Qiao, Hu, Ma, Guangliang, Zhou, Jiahui: Adaptive sliding mode control with enhanced optimal reaching law for boost converter based hybrid power sources in electric vehicles. J. Power Electron. 19(2), 549-559 (2019) https://doi.org/10.6113/JPE.2019.19.2.549
  5. Cao, J., Emadi, A.: A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles. IEEE Trans. Power Electron. 27(1), 122-132 (2012) https://doi.org/10.1109/TPEL.2011.2151206
  6. Zhang, Y., Gao, Y., Li, J., Sumner, M.: Interleaved switched-capacitor bidirectional dc-dc converter with wide voltage-gain range for energy storage systems. IEEE Trans. Power Electron. 33(5), 3852-3869 (2018) https://doi.org/10.1109/tpel.2017.2719402
  7. Wang, P., Zhao, C., Zhang, Y., Li, J., Gao, Y.: A bidirectional three-level DC-DC converter with a wide voltage conversion range for hybrid energy source electric vehicles. J. Power Electron. 17(2), 334-345 (2017) https://doi.org/10.6113/JPE.2017.17.2.334
  8. Yao, C., Ruan, X., Wang, X.: Automatic mode-shifting control strategy with input voltage feed-forward for full-bridge-boost DC-DC converter suitable for wide input voltage range. IEEE Trans. Power Electron. 30(3), 1668-1682 (2015) https://doi.org/10.1109/TPEL.2014.2317795
  9. Mishima, T., Mizutani, H., Nakaoka, M.: A sensitivity-improved PFM LLC resonant full-bridge DC-DC converter with LC antiresonant circuitry. IEEE Trans. Power Electron. 32(1), 310-324 (2017) https://doi.org/10.1109/TPEL.2016.2524640
  10. Wu, H., Lu, J., Shi, W., Xing, Y.: Nonisolated bidirectional DC-DC converters with negative-coupled inductor. IEEE Trans. Power Electron. 27(5), 2231-2235 (2017) https://doi.org/10.1109/TPEL.2011.2180540
  11. Das, P., Laan, B., Mousavi, S.A., Moschopoulos, G.: A nonisolated bidirectional ZVS-PWM active clamped DC-DC converter. IEEE Power Electron. 24(2), 553-558 (2009) https://doi.org/10.1109/TPEL.2008.2006897
  12. Dwari, S., Parsa, L.: An efficient high-step-up interleaved DC-DC converter with a common active clamp. IEEE Trans. Power Electron. 26(1), 66-78 (2011) https://doi.org/10.1109/TPEL.2010.2051816
  13. Matsuo, H., Kurokawa, F.: New solar cell power supply system using a boost type bidirectional DC-DC converter. IEEE Trans. Ind. Electron. 31, 51-55 (1984) https://doi.org/10.1109/TIE.1984.350020
  14. Forouzesh, M., Siwakoti, Y., Gorji, S., et al.: Step-up DC-DC converters: a comprehensive review of voltage boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143-9178 (2017) https://doi.org/10.1109/TPEL.2017.2652318
  15. L. Sun, F. Zhuo, F. Wang, T. Zhu: A novel topology of high voltage and high power bidirectional ZCS DC-DC converter based on serial capacitors. In: Proc. IEEE Appl. Power Electron. Conf. Expo., pp. 810-815 (2016)
  16. Khan, F., Tolbert, L.: A multilevel modular capacitor-clamped DC-DC converter. IEEE Trans. Ind. Appl. 43(6), 1628-1638 (2007) https://doi.org/10.1109/TIA.2007.908176
  17. A. Anish, R. K. Singh, R. Mahanty: Bidirectional quadratic converter for wide voltage conversion ratio. In: IEEE international conference on power electronics, drives and energy systems IEEE, pp. 1-5 (2017)
  18. Pires, V.F., Foito, D., Cordeiro, A.: A DC-DC converter with quadratic gain and bidirectional capability for batteries/supercapacitors. IEEE Trans. Ind. Appl. 54(1), 274-285 (2018) https://doi.org/10.1109/tia.2017.2748926
  19. Wu, H., Sun, K., Chen, L., Zhu, L.: High step-up/step-down soft-switching bidirectional DC-DC converter with coupled-inductor and voltage matching control for energy storage systems. IEEE Trans. Ind. Electron. 63(5), 2892-2903 (2016) https://doi.org/10.1109/TIE.2016.2517063
  20. Hsieh, Y.P., Chen, J.F., Yang, L.S., Wu, C.Y., Liu, W.S.: High conversion-ratio bidirectional DC-DC converter with coupled inductor. IEEE Trans. Ind. Electron. 61(1), 210-222 (2014) https://doi.org/10.1109/TIE.2013.2244541
  21. Wai, R.-J., Duan, R.-Y., Jheng, K.-H.: High-efficiency bidirectional DC-DC converter with high-voltage gain. IET Power Electron. 5(2), 173-184 (2012) https://doi.org/10.1049/iet-pel.2011.0194
  22. Tang, Y., Fu, D., Wang, T., Xu, Z.: Hybrid switched-inductor converters for high step-up conversion. IEEE Trans. Ind. Electron. 62(3), 1480-1490 (2015) https://doi.org/10.1109/TIE.2014.2364797
  23. Axelrod, B., Berkovich, Y., Ioinovici, A.: Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters. IEEE Trans. Circ. Syst. I Reg. Papers 55(2), 687-696 (2008) https://doi.org/10.1109/TCSI.2008.916403
  24. Tang, Y., Wang, T., He, Y.: A switched-capacitor-based active-network converter with high voltage gain. IEEE Trans. Power Electron. 29(6), 2959-2968 (2014) https://doi.org/10.1109/TPEL.2013.2272639
  25. Zhang, Y., Gao, Y., Zhou, L., Sumner, M.: A switched-capacitor bidirectional dc-dc converter with wide voltage gain range for electric vehicles with hybrid energy sources. IEEE Trans. Power Electron. 33(11), 9459-9469 (2018) https://doi.org/10.1109/tpel.2017.2788436
  26. Zhang, Y., Liu, Q., Gao, Y., Li, J., Sumner, M.: Hybrid switched-capacitor/switched-quasi-z-source bidirectional DC-DC converter with a wide voltage gain range for hybrid energy sources EVs. IEEE Trans. Ind. Electron. 66(4), 2680-2690 (2019) https://doi.org/10.1109/TIE.2018.2850020
  27. Liao, S.H., Teng, J.H., Chen, S.W.: Bidirectional DC-DC converter with high step-down and step-up voltage conversion ratio. In: Proc. IEEE Power Electron. Spec. Conf., pp. 1-6 (2017)
  28. Erickson, R.W., Maksimovic, D.: Fundamentals of power electronics, 2nd edn. Kluwer, Norwell (2001)

Cited by

  1. Practical Controller Design of Three-Phase Dual Active Bridge Converter for Low Voltage DC Distribution System vol.9, pp.12, 2020, https://doi.org/10.3390/electronics9122101