DOI QR코드

DOI QR Code

Behavioral switching model for current-fed Cockcroft-Walton voltage multiplier

  • Rajaei, Amirhossein (Department of Electrical and Electronics Engineering, Shiraz University of Technology) ;
  • Dehghanian, Iman (Department of Electrical and Electronics Engineering, Shiraz University of Technology) ;
  • Shahparasti, Mahdi (Electrical Engineering Section, The Mads Clausen Institute, University of Southern Denmark) ;
  • Poursmaeil, Edris (Department of Electrical Engineering and Automation, Aalto University)
  • Received : 2019.04.15
  • Accepted : 2019.10.11
  • Published : 2020.03.20

Abstract

After about 80 years of introducing the Cockcroft-Walton (CW) circuit, it is still widely used because of its advantages, such as simplicity and high step-up gain. Several studies focused on the performance and design optimization of the circuit, but a dynamic model of the circuit remains to be established. This study analyzed the operation principles of an n-stage current-fed Cockcroft-Walton (CF-CWVM) during transient and steady-state operations. Then, an approach was derived to achieve a mathematical model for CF-CWVM with an arbitrary number of stages. A mathematical model for one- and two-stage CF-CWVM was developed, and its results were compared with simulation results. The theoretical model and simulations were validated by providing a prototype of CF-CWVM and comparing the results with the model outputs.

Keywords

References

  1. Iqbal, S., Singh, G.K., Besar, R.: A dual-mode input voltage modulation control scheme for voltage multiplier based X-ray power supply. IEEE Trans. Power Electron. 23(2), 1003-1008 (2008) https://doi.org/10.1109/TPEL.2008.917820
  2. Vishwanathan, N., Ramanarayana, V.: High voltage dc power supply topology for pulsed load applications with converter switching synchronized to load pulses. In: The Fifth International Conference on Power Electronics and Drive Systems, pp. 618-623 (2003)
  3. Wang, H., Chung, H., Tapuchi, S., Ioinovici, A.: Modeling and analysis of a current-fed ZCS full-bridge DC/DC converter with adaptive soft-switching energy. In: Applied Power Electronics Conference and Exposition, pp. 1410-1416 (2009)
  4. Chang, L.-K., Hu, C.-H.: High efficiency MOS charge pumps based on exponential-gain structure with pumping gain increase circuits". IEEE Trans. Power Electron. 21(3), 826-831 (2006) https://doi.org/10.1109/TPEL.2006.874795
  5. Hu, C.-H., Chang, L.-K.: Analysis and modeling of on-chip charge pump designs based on pumping gain increase circuits with a resistive load. IEEE Trans. Power Electron. 23(4), 2187-2194 (2008) https://doi.org/10.1109/TPEL.2008.926950
  6. Alonso, J.M., Blanco, C., Lopez, E., Calleja, A.J., Rico, M.: Analysis, design, and optimization of the LCC resonant inverter as a high-intensity discharge lamp ballast. IEEE Trans. Power Electron. 13(3), 573-585 (1998) https://doi.org/10.1109/63.668122
  7. Jia, P., Yuan, Y.: Analysis and implementation of LC series resonant converter with secondary side clamp diodes under DCM operation for high step-up applications. J. Power Electron. JPE 19(2), 363-379 (2019)
  8. Tseng, K., Chen, C., Cheng, C.: A high-efficiency high step-up interleaved converter with a voltage multiplier for electric vehicle power management applications. J. Power Electron. JPE 16(2), 414-424 (2016) https://doi.org/10.6113/JPE.2016.16.2.414
  9. Hu, X., Gao, B., Huang, Y., Chen, H.: Novel single switch DC-DC converter for high step-up conversion ratio. J. Power Electron. JPE 18(3), 662-671 (2018)
  10. Ortiz, G., Bortis, D., Biela, J., Kolar, J.W.: Optimal design of a 3.5-kV/11-kW DC-DC converter for charging capacitor banks of power modulators. IEEE Trans. Plasma Sci. 38(10), 2565-2573 (2010) https://doi.org/10.1109/TPS.2009.2038162
  11. McLyman, C.W.T.: Transformer and Inductor Design Handbook. CRC Press, Boca Raton (2011)
  12. Baek, J.W., Ryoo, M.H., Kim, T.J., Yoo, D.W., Kim, J.S.: High boost converter using voltage multiplier. In: IEEE Industrial Electronics Society 31th Annual Conference, pp. 6-12 (2005)
  13. Berkovich, Y., Axelrod, B., Shenkman, A.: A novel diode-capacitor voltage multiplier for increasing the voltage of photovoltaic cells. In: 11th Workshop on Control and Modeling for Power Electronics, COMPE, pp. 1-5 (2008)
  14. Santoja, A., Barrado, A., Fernandez, C., Sanz, M., Raga, C., Lazaro, A.: High voltage gain DC-DC converter for micro and nanosatellite electric thrusters. In: 28th Applied Power Electronics Conference and Exposition (APEC), pp. 2057-2063 (2013)
  15. Muller, L., Kimball, J.W.: Dual-input high gain DC-DC converter based on the Cockcroft-Walton multiplier. In: Energy Conversion Congress and Exposition (ECCE), pp. 5360-5367 (2014)
  16. Young, C.M., Chen, M.H., Chang, T.A., Ko, C.C., Jen, K.K.: Cascade Cockcroft-Walton voltage multiplier applied to transformerless high step- up DC-DC converter. IEEE Trans. Ind. Electron. 60(2), 523-537 (2013) https://doi.org/10.1109/TIE.2012.2188255
  17. Uno, M., Kukita, A.: Bidirectional pwm converter integrating cell voltage equalizer using series-resonant voltage multiplier for series connected energy storage cells. IEEE Trans. Power Electron. 30(6), 3077-3090 (2015) https://doi.org/10.1109/TPEL.2014.2331312
  18. Almeida, M.: Low power consumption bias supply for channel electron multiplier. Electron. Lett. 32(22), 2031-2032 (1996) https://doi.org/10.1049/el:19961379
  19. Rezanejad, M., Sheikholeslami, A., Adabi, J.: Modular switched capacitor voltage multiplier topology for pulsed power supply. IEEE Trans. Dielectr. Electr. Insul. 21(2), 635-643 (2014) https://doi.org/10.1109/TDEI.2013.004067
  20. Young, C.M., Chen, M.H.: A novel single-phase ac to high voltage DC converter based on Cockcroft-Walton cascade rectifier. In: International Conference on Power Electronics and Drive Systems, PEDS, pp. 822-826 (2009)
  21. Axelrod, B., Berkovich, Y., Shenkman, A., Golan, G.: Diode-capacitor voltage multipliers combined with boost-converters: topologies and characteristics. IET Power Electron. 5(6), 873-884 (2012) https://doi.org/10.1049/iet-pel.2011.0215
  22. Di Cataldo, G., Palumho, G.: Double and triple charge pump for power IC: dynamic models which take parasitic effects into account. IEEE Trans. Circuits Syst. 40, 92-101 (1993) https://doi.org/10.1109/81.219823
  23. Di Cataldo, G., Palumho, G.: Improved dynamic model of double and triple charge pump to take current leakage into account. Int. J. Circuit Theory Appl. 22(5), 419-423 (1994) https://doi.org/10.1002/cta.4490220510
  24. Wang, F., Li, J.: Improved small signal modeling and dynamic analysis of high step-up converter with charged pump and boost converter. In: IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, pp. 495-499 (2016)
  25. Di Cataldo, G., Palumbo, G.: Design of an nth order Dickson voltage multiplier. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(5), 414-419 (1996) https://doi.org/10.1109/81.502213
  26. Dickson, J.: On-chip high-voltage generation MNOS integrated circuits using an improved voltage multiplier technique. IEEE J. Solid-State Circuits 11, 374-378 (1976) https://doi.org/10.1109/JSSC.1976.1050739
  27. Witters, J., Groeseneken, G., Maes, H.: Analysis and modeling of on-chip high-voltage generator circuits for use in EEPROM circuits. IEEE J. Solid-State Circuits 24(1), 1372-1380 (1989) https://doi.org/10.1109/JSSC.1989.572617
  28. Prabhala, V.A.K., Fajri, P., Gouribhatla, V.S.P., Baddipadiga, B.P., Ferdowsi, M.: A DC-DC converter with high voltage gain and two input boost stages. IEEE Trans. Power Electron. 31(1), 4206-4215 (2016) https://doi.org/10.1109/TPEL.2015.2476377
  29. Baddipadiga, B., Ferdowsi, M.: A high-voltage-gain DC-DC converter based on modified Dickson charge pump voltage multiplier. IEEE Trans. Power Electron. 32(10), 7707-7715 (2017) https://doi.org/10.1109/TPEL.2016.2594016
  30. Tanzawa, T.: An optimum design for integrated switched-capacitor Dickson charge pump multipliers with area power balance. IEEE Trans. Power Electron. 29(2), 534-538 (2014) https://doi.org/10.1109/TPEL.2013.2271279
  31. Cruz, F.R.G., et al.: Efficiency comparison of voltage multiplier and boost converter topologies for radio frequency energy harvesting circuit using HSPICE. In: 2016 IEEE Region 10 Conference (TENCON), Singapore, pp. 2142-2146 (2016)
  32. Tanzawa, T.: Innovation of switched-capacitor voltage multiplier: part 1: a brief history. IEEE Solid-State Circuits Mag. 8(1), 51-59 (2016) https://doi.org/10.1109/MSSC.2015.2495678
  33. Tanzawa, T.: Innovation of switched-capacitor voltage multiplier: part 2: fundamentals of the charge pump. IEEE Solid-State Circuits Mag. 8(2), 83-92 (2016) https://doi.org/10.1109/MSSC.2016.2543065
  34. Tanzawa, T.: Innovation of switched-capacitor voltage multiplier: part 3: state of the art of switching circuits and applications of charge pumps. IEEE Solid-State Circuits Mag. 8(3), 63-73 (2016) https://doi.org/10.1109/MSSC.2016.2573998
  35. Lamantia, A., Maranesi, P.G., Radrizzani, L.: Small-signal model of the Cockcroft-Walton voltage multiplier. IEEE Trans. Power Electron. 9(1), 18-25 (1994) https://doi.org/10.1109/63.285489
  36. Brugler, J.: Theoretical performance of voltage multiplier circuits. IEEE J. Solid-State Circuits 6(3), 132-135 (1971) https://doi.org/10.1109/JSSC.1971.1049670
  37. Malesani, L., Piovan, R.: Theoretical performance of the capacitor-diode voltage multiplier fed by a current source. IEEE Trans. Power Electron. 8(2), 147-155 (1993) https://doi.org/10.1109/63.223966
  38. Bellar, M., Watanabe, E., Mesquita, A.: Analysis of the dynamic and steady-state performance of Cockcroft-Walton cascade rectifiers. IEEE Trans. Power Electron. 7(3), 526-534 (1992) https://doi.org/10.1109/63.145140
  39. Kobougias, I.C., Tatakis, E.C.: Optimal design of a half-wave Cockcroft-Walton voltage multiplier with minimum total capacitance. IEEE Trans. Power Electron. 25(9), 2460-2468 (2010) https://doi.org/10.1109/TPEL.2010.2049380
  40. Katzir, L., Shmilovitz, D.: A split-source multisection high-voltage power supply for X-ray. IEEE J. Emerg. Sel. Top. Power Electron. 4(2), 373-381 (2016) https://doi.org/10.1109/JESTPE.2015.2477076
  41. Kang, B., Low, K.S., Soon, J.J., Tran, Q.V.: Single-switch quasi-resonant DC-DC converter for a pulsed plasma thruster of satellites. IEEE Trans. Power Electron. 32(6), 4503-4513 (2017) https://doi.org/10.1109/TPEL.2016.2600035
  42. Kim, Y.J., Bhamra, H.S., Joseph, J., Irazoqui, P.P.: An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application. IEEE Trans. Circuits Syst. II Express Briefs 62(11), 1028-1032 (2015)
  43. Weiner, M.M.: Analysis of Cockcroft-Walton voltage multipliers with an arbitrary number of stages. Rev. Sci. Instrum. 40(2), 330-333 (1962) https://doi.org/10.1063/1.1683930
  44. Guinjoan, F., Calvente, J., Poveda, A., Martinez, L.: Large-signal modeling and simulation of switching DC-DC converters. IEEE Trans. Power Electron. 12(3), 485-494 (1997) https://doi.org/10.1109/63.575676
  45. Rajaei, A., Khazan, R., Mahmoudian, M., Mardaneh, M., Gitizadeh, M.: A dual inductor high step-up DC/DC converter based on the Cockcroft-Walton multiplier. IEEE Trans. Power Electron. 33(11), 9699-9709 (2018) https://doi.org/10.1109/tpel.2018.2792004

Cited by

  1. Power Conversion Using Analytical Model of Cockcroft-Walton Voltage Multiplier Rectenna vol.10, pp.8, 2020, https://doi.org/10.3390/electronics10080881
  2. A High Gain AC-DC Rectifier Based on Current-Fed Cockcroft-Walton Voltage Multiplier for Motor Drive Applications vol.13, pp.21, 2020, https://doi.org/10.3390/su132112317