DOI QR코드

DOI QR Code

Parameters optimization design for LCL-type STATCOMs under complex power grid

  • Wang, Xiangyu (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Wang, Minglei (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Wang, Liguo (School of Electrical Engineering and Automation, Harbin Institute of Technology) ;
  • Fu, Guangjie (School of Electrical Engineering and Information, Northeast Petroleum University) ;
  • Qiao, Jinxin (School of Electrical Engineering and Automation, Harbin Institute of Technology)
  • Received : 2019.05.01
  • Accepted : 2019.10.21
  • Published : 2020.03.20

Abstract

LCL filter parameters and control parameters are interdependent and inter-restricted. They can all affect the stability of a static synchronous compensator (STATCOM) under the effects of a complex power grid such as harmonic grid voltage and grid impedance variation. An advanced parameters optimization method integrated with LCL filter and control strategy is proposed. At first, the ABC-Pareto algorithm (Pareto multi-objective optimization of an artificial bee colony algorithm) is used to reasonably choose the LCL filter parameters. Under the premise of using capacitor current feedback active damping control and grid voltage feedforward control, the mathematical models of the STATCOM are derived. The constraints of control performances on the control parameters are obtained. According to these constraints, it is possible to construct a satisfactory 3D space. The control parameters can be chosen reasonably by finding the optimized space when the power grid is changed. Simulation and experimental results show the effectiveness and superiority of the proposed method.

Keywords

References

  1. Nguyen, T.H., Lee, D., Van, T.L., Kang, J.: Coordinated control of reactive power between STATCOMs and wind farms for PCC voltage regulation. J. Power Electron. 13(5), 909-918 (2013) https://doi.org/10.6113/JPE.2013.13.5.909
  2. Lu, D., Zhu, J., Wang, J., et al.: A simple zero-sequence-voltage-based cluster voltage balancing control and the negative sequence current compensation region identification for star-connected cascaded H-bridge STATCOM. IEEE Trans. Power Electron. 33(10), 8376-8387 (2018) https://doi.org/10.1109/tpel.2017.2785239
  3. Wang, L., Chang, C.-H., Kuan, B.-L., Prokhorov, A.V.: Stability improvement of a two-area power system connected with an integrated onshore and offshore wind farm using a STATCOM. IEEE Trans. Power Syst. 53(2), 867-877 (2017)
  4. Jayalath, S., Hanif, M.: Generalized LCL-filter design algorithm for grid-connected voltage-source inverter. IEEE Trans. Ind. Electron. 64(3), 1905-1915 (2017) https://doi.org/10.1109/TIE.2016.2619660
  5. Lee, J., Cho, Y., Kim, H., Jung, J.: Design methodology of passive damped LCL filter using current controller for grid-connected three-phase voltage-source inverters. J. Power Electron. 18(4), 1178-1189 (2018) https://doi.org/10.6113/JPE.2018.18.4.1178
  6. Beres, R.N., Wang, X., Blaabjerg, F., et al.: Optimal design of high-order passive-damping filters for grid-connected applications. IEEE Trans. Power Electron. 31(3), 2083-2098 (2016) https://doi.org/10.1109/TPEL.2015.2441299
  7. Liu, Y., Wu, W., He, Y.: An efficient and robust hybrid damper for LCL-or LLCL-based grid-tied inverter with strong grid-side harmonic voltage effect rejection. IEEE Trans. Ind. Electron. 63(2), 926-936 (2016) https://doi.org/10.1109/TIE.2015.2478738
  8. Alzola, R.P., Liserre, M., Blaabjerg, F., et al.: LCL-filter design for robust active damping in grid-connected converters. IEEE Trans. Ind. Inf. 10(10), 2192-2203 (2014) https://doi.org/10.1109/TII.2014.2361604
  9. Gaafar, M.A., Dousoky, G.M., Ahmed, E.M., et al.: New design approach for grid-current-based active damping of LCL filter resonance in grid-connected converters. J. Power Electron. 18(4), 1165-1177 (2018) https://doi.org/10.6113/JPE.2018.18.4.1165
  10. Chen, X., Wang, Y., Zhang, Y., et al.: Hybrid damping adaptive control scheme for grid-connected inverters in a weak grid. IET Power Electron. 9(15), 2760-2768 (2016) https://doi.org/10.1049/iet-pel.2015.1016
  11. Wang, X., Bo, X., Liu, S., Tse, C.K.: Full feedforward of grid voltage for grid-connected inverter with LCL filter to suppress current distortion due to grid voltage harmonic. IEEE Trans. Power Electron. 25(12), 3119-3127 (2010) https://doi.org/10.1109/TPEL.2010.2077312
  12. Yang, D., Ruan, X., Wu, H.: Impedance shaping of the grid-connected inverter with LCL filter to improve its adaptability to the weak grid condition. IEEE Trans. Power Electron. 29(11), 5795-5805 (2014) https://doi.org/10.1109/TPEL.2014.2300235
  13. Jia, Y., Zhao, J., Fu, X.: Direct grid current control of LCL-Filtered grid-connected inverter mitigating grid voltage disturbance. IEEE Trans. Power Electron. 29(3), 1532-1541 (2014) https://doi.org/10.1109/TPEL.2013.2264098
  14. Yan, Q., Wu, X., Yuan, X., Geng, Y.: An improved grid-voltage feedforward strategy for high-power three-phase grid-connected inverters based on the simplified repetitive predictor. IEEE Trans. Power Electron. 31(5), 3880-3897 (2016) https://doi.org/10.1109/TPEL.2015.2461632
  15. Xu, J., Xie, S., Qian, Q., Zhang, B.: Adaptive feedforward algorithm without grid impedance estimation for inverters to suppress grid current instabilities and harmonics due to grid impedance and grid voltage distortion. IEEE Trans. Ind. Electron. 64(9), 7574-7586 (2017) https://doi.org/10.1109/TIE.2017.2711523
  16. Wang, J., Xing, Y., et al.: High-pass-filter based virtual impedance control for LCL-filtered inverters under weak grid. J. Power Electron. 18(6), 1780-1790 (2018) https://doi.org/10.6113/JPE.2018.18.6.1780
  17. Xu, J., Xie, S., Zhang, B., Qian, Q.: Robust grid current control with impedance-phase shaping for LCL-filtered inverters in weak and distorted grid. IEEE Trans. Power Electron. 33(12), 10240-10250 (2018) https://doi.org/10.1109/tpel.2018.2808604
  18. Poongothai, C., Vasudevan, K.: Design of LCL filter for grid-interfaced PV system based on cost minimization. IEEE Trans. Ind. Appl. 55(1), 584-592 (2019) https://doi.org/10.1109/TIA.2018.2865723
  19. Wu, Z., Aldeen, M.: Optimal design method of passive LCL filter for grid-connected inverters. In: IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp 237-242 (2016). https://doi.org/10.1109/APPEEC.2016.7779504
  20. Xu, J., Xie, S., Tang, T.: An adaptive current control for grid-connected LCL-filtered inverters in weak grid case. Proc. CSEE 34(24), 4031-4039 (2014)
  21. Liu, G., Shi, T., Ma, T., Wang, W.: Adaptive quasi-PRD control method of grid-connected PV inverter in weak grid. Power Syst. Technol. 41(1), 113-117 (2017)
  22. Bao, C., Ruan, X., Wang, X., et al.: Step-by-step controller design for LCL-type grid-connected inverter with capacitor-current-feedback active-damping. IEEE Trans. Power Electron. 29(3), 1239-1253 (2014) https://doi.org/10.1109/TPEL.2013.2262378
  23. Jayalath, S., Hanif, M.: An LCL-Filter design with optimum total inductance and capacitance. IEEE Trans. Power Electron. 33(8), 6687-6698 (2018) https://doi.org/10.1109/TPEL.2017.2754100
  24. Gao, W., Liu, S., Huang, L.: A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans. Cybern. 43(3), 1011-1024 (2013) https://doi.org/10.1109/TSMCB.2012.2222373