DOI QR코드

DOI QR Code

Electrical variable capacitor using symmetrical switch configuration for reducing switch voltage in RF plasma systems

  • Min, Juhwa (Department of Electrical Engineering, Jeonbuk National University) ;
  • Chae, Beomseok (Department of Electrical Engineering, Jeonbuk National University) ;
  • Suh, Yongsug (Department of Electrical Engineering, Jeonbuk National University) ;
  • Kim, Jinho (Manufacturing Technology Center, Samsung Electronics) ;
  • Kim, Hyunbae (Manufacturing Technology Center, Samsung Electronics)
  • Received : 2020.03.24
  • Accepted : 2020.07.28
  • Published : 2020.11.20

Abstract

This paper introduces a novel method to reduce the voltage stress experienced by 320 V/1 kW/13.56 MHz electrical variable capacitor (EVC) circuits with an asymmetrical switch configuration applied in the impedance matching circuits of RF plasma systems. The proposed method employs a symmetrical switch configuration in place of the asymmetrical switch configuration in each of the capacitor legs in an EVC circuit. The symmetrical switch configuration reduces the voltage stress in the EVC circuit due to symmetrical charging and discharging modes. As a result, the proposed circuit can be used in etching systems. The major idea is verified by simulation and experimental results, which successfully demonstrate that the voltage stress on the switch of an EVC circuit is reduced by more than 35%.

Keywords

Acknowledgement

This research was supported by Korea Electric Power Corporation. (Grant number: R18XA04)

References

  1. Yin, G., Zhou, Y., Zhang, Y., Yuan, Q.: Investigation of the growth of carbon films by ar/ch4 plasma jet driven by 100-MHz/100-kHz dual frequency source at atmospheric pressure. IEEE Trans. Plasma Sci. 48(4), 946-952 (2020) https://doi.org/10.1109/tps.2020.2979499
  2. Liu, Y., Tang, H., Tang, X., Liu, Y., Huang, F.: Experimental investigation on dust vertical coagulation process in an ethylene RF discharge plasma. IEEE Trans. Plasma Sci. 48(4), 1173-1176 (2020) https://doi.org/10.1109/tps.2020.2981345
  3. Ivanov, D.V., Zverev, S.G.: Mathematical simulation of processes in air ICP/RF plasma torch for high-power applications. IEEE Trans. Plasma Sci. 48(2), 338-342 (2020) https://doi.org/10.1109/tps.2019.2957676
  4. Matveev, I.B., Serbin, S.I.: A multitorch RF plasma system as a way to improve temperature uniformity for high-power applications. IEEE Trans. Plasma Sci. 48(2), 332-337 (2020) https://doi.org/10.1109/tps.2019.2950260
  5. Imran, A.B.: RF impedance matching network. U.S. Patent 10 026 594 B2 (2018)
  6. William, E.M.: Method and apparatus for adaptive impedance matching. U.S. Patent 10 050 598 B2 (2018)
  7. Wojciech, G., Rafal, B.: Plasma impedance matching for supplying RF power to a plasma load. U.S. Patent 10 410 835 B2 (2019)
  8. Martins, G.C., Serdijn, W.A.: Multistage complex-impedance matching network analysis and optimization. IEEE Trans. Circuits Syst. 63(9), 833-837 (2016) https://doi.org/10.1109/TCSII.2016.2534738
  9. Jiang, C., Chundong, Hu, Xie, Y., Chen, S., Cui, Q., Xie, Y.: Analysis and experimental study of impedance matching characteristic of RF ion source on neutral beam injector. IEEE Trans. Plasma Sci. 46(7), 2677-2679 (2018) https://doi.org/10.1109/tps.2017.2778724
  10. Imran, A.B.: RF impedance matching network. U.S. Patent 9 196 459 B2 (2015)
  11. Christopher, C.M.: High frequency solid state switching for impedance matching. U.S. Patent 8 436 643 B2 (2013)
  12. Florian, M.: Impedance matching. U.S. Patent 8 542 076 B2 (2013)
  13. Gideon, J.Z., Gennady, G. G.: Impedance-matching network using BJT switches in variable-reactance circuit. U.S. Patent 8 416 008 B2 (2013)
  14. Michael, G.U., Imran, A.B., Chingping H.: Impedance matching network and method. U.S. Patent, Pub. No. US 2020/0066488 A1 (2020)
  15. Ni, Y, Pervaiz, S., Chan, M., Afridi, K.K.: Energy density enhancement of stacked switched capacitor energy buffers through capacitance ratio optimization. IEEE Trans. Power Electron. 32(8), 6363-6380 (2017) https://doi.org/10.1109/TPEL.2016.2619370
  16. Mahnashi, Y., Peng, F.Z.: Generalization of the fundamental limit theory in switched-capacitor converter. IEEE Trans. Power Electron. 32(9), 6673-6676 (2017) https://doi.org/10.1109/TPEL.2017.2679106
  17. Sreenath, V., George, B.: An improved closed-loop switched capacitor capacitance-to-frequency converter and its evaluation. IEEE Trans. Instrum. Meas. 67(5), 1028-1035 (2018) https://doi.org/10.1109/tim.2018.2795336
  18. Yang, Xu, Kinget, P.R.: A chopping switched-capacitor RF receiver with integrated blocker detection. IEEE J. Solid-State Circuit 53(6), 1607-1617 (2018) https://doi.org/10.1109/jssc.2018.2808423