DOI QR코드

DOI QR Code

Second harmonic reduction method for ZVS operation in a fuel cell system

  • Kwon, Yong-Dae (Chair of Power Electronics, Christian-Albrechts University of Kiel) ;
  • Park, Jin-Hyuk (Korea Railroad Research Institute) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • 투고 : 2018.12.16
  • 심사 : 2019.04.17
  • 발행 : 2020.03.20

초록

This study proposes a second harmonic reduction method for the zero-voltage switching (ZVS) operation of a DC/DC converter in a fuel cell system. In this system, a boost-type DC/DC converter and single-phase inverter are interconnected. Second harmonic oscillations are generated in the DC link that interconnects the DC/DC converter and inverter. The ripple component reduces the input current generated during the ZVS operation. Consequently, the total efficiency of the system is decreased. Stress-induced effects are also experienced by the fuel cell owing to this ripple component, thereby decreasing the life span of the fuel cell. To ameliorate the effects of the second harmonic ripples, a type-II current controller is used in the DC/DC converter to generate an adequate controller gained at the target frequency. The validity of the proposed control method is verified using PSIM simulations and experiments with the use of a fuel cell system rated at 1 kW.

키워드

과제정보

This study was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP), Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20171210201100), and "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP). Financial resources were also granted by the Ministry of Trade, Industry and Energy, Republic of Korea (No. 20174030201660).

참고문헌

  1. Park, S., Park, Y., Choi, S., Choi, W., Lee, K.-B.: Soft-switched interleaved boost converters for high step-up and high-power applications. IEEE Trans. Power Electron. 26(10), 2906-2914 (2011) https://doi.org/10.1109/TPEL.2010.2089698
  2. Park, S., Choi, S.: Soft-switched CCM boost converters with high voltage gain for high-power applications. IEEE Trans. Power Electron. 25(5), 1211-1217 (2010) https://doi.org/10.1109/TPEL.2010.2040090
  3. Bak, Y.S., Lee, E.S., Lee, K.-B.: Indirect matrix converter for hybrid vehicle application with tree-phase and single outputs. Energies 8(5), 3849-3866 (2015) https://doi.org/10.3390/en8053849
  4. Park, J.-H., Jeong, H.-G., Lee, K.-B.: Output current ripple reduction algorithms for home energy storage systems. Energies 6(10), 5552-5569 (2013) https://doi.org/10.3390/en6105552
  5. Ahn, M.H., Park, J.-H., Lee, K.-B.: Model-based optimal control algorithm for DC-DC converter. J. Power Electron. 17(2), 323-333 (2017) https://doi.org/10.6113/JPE.2017.17.2.323
  6. Park, J.S., Kim, M.J., Jeong, H.S., Kim, J.H., Choi, S.W.: Development of 50 kW high efficiency modular fast charger with wide charging voltage range. Trans. Korean Inst. Power Electron. 21(3), 267-274 (2016) https://doi.org/10.6113/TKPE.2016.21.3.267
  7. Farkoush, S.G., Kim, C.-H., Lee, S., Umpon, N.T., Rhee, S.-B.: Power factor improvement of distribution system with EV chargers based on SMC method for SVC. J. Electr. Eng. Technol. 12(4), 1340-1347 (2017) https://doi.org/10.5370/JEET.2017.12.4.1340
  8. Kim, S.-K., Park, J.-H., Lee, K.-B.: Robust optimal output voltage tracking algorithm for interleaved N-phase DC/DC boost converter with performance recovery property. Int. J. Electron. 105(10), 1673-1694 (2018) https://doi.org/10.1080/00207217.2018.1477198
  9. Jain, M., Daniele, M., Jain, P.K.: A bidirectional DC-DC converter topology for low power application. IEEE Trans. Power Electron. 15(4), 595-606 (2000) https://doi.org/10.1109/63.849029
  10. Kwon, Y.-D., Park, J.-H., Lee, K.-B.: Improving line current distortion in single-phase Vienna rectifiers using model-based predictive control. Energies 11(5), 1237 (2018) https://doi.org/10.3390/en11051237
  11. Choi, W.-J., Lee, K.-B., Joung, G.-B.: Bidirectional soft switching three-phase interleaved DC-DC converter for a wide input voltage range. Trans. Korean Inst. Power Electron. 20(4), 313-320 (2015) https://doi.org/10.6113/TKPE.2015.20.4.313
  12. Jeong, G.-Y., Kwon, S.-H., Park, G.-Y.: Simple high efficiency full-bridge DC-DC converter using a series resonant capacitor. J. Electr. Eng. Technol. 11(1), 100-108 (2016) https://doi.org/10.5370/JEET.2016.11.1.100
  13. Yang, S., Park, J.-H., Lee, K.-B.: Current quality improvement for a Vienna rectifier with high-switching frequency. Trans. Korean Inst. Power Electron. 22(2), 181-184 (2017) https://doi.org/10.6113/TKPE.2017.22.2.181
  14. Kim, S.-M., Jeong, M.-G., Lee, K.-B.: Hybrid modulation scheme for switching loss reduction in a modular multilevel high-voltage direct current converter. IEEE Trans. Power Electron. 34(4), 3178-3191 (2018) https://doi.org/10.1109/tpel.2018.2848620
  15. Marcos-Pastor, A., Vidal-Idiarte, E., Cid-Pastor, A., Martinez-Salamero, L.: Interleaved digital power factor correction based on the sliding-mode approach. IEEE Trans. Power Electron. 31(6), 4641-4653 (2015) https://doi.org/10.1109/TPEL.2015.2476698
  16. Lee, J.-H., Lee, J.-S., Moon, H.-C., Lee, K.-B.: An improved finite set model predictive control based on discrete space vector modulation for grid-connected voltage source inverter. IEEE J. Emerg. Sel. Top. Power Electron. 6(4), 1744-1760 (2018) https://doi.org/10.1109/jestpe.2018.2830783
  17. Kanaan, H.Y., Al-Haddad, K., Hayek, A., Mougharbel, I.: Design, study, modelling and control of a new single-phase high power factor rectifier based on the single-ended primary inductance converter and the Sheppard-Taylor topology. IET Power Electron. 2(2), 163-177 (2009) https://doi.org/10.1049/iet-pel:20070051
  18. Kim, S.-M., Won, I.J., Lee, K.-B.: DC-link ripple current reduction method for three-level inverters with optimal switching pattern. IEEE Trans. Ind. Electron. 65(12), 9204-9214 (2018) https://doi.org/10.1109/tie.2018.2823662
  19. Fontes, G., Turpin, C., Astier, S., Meynard, T.A.: Interactions between fuel cells and power converters : influence of current harmonics on a fuel cell stack. IEEE Trans. Power Electron. 22(2), 670-678 (2007) https://doi.org/10.1109/TPEL.2006.890008
  20. Cao, L., Loo, K.H., Lai, Y.M.: Frequency-adaptive filtering of low-frequency harmonic current in fuel cell power conditioning systems. IEEE Trans. Power Electron. 30(4), 1966-1978 (2015) https://doi.org/10.1109/TPEL.2014.2323398
  21. Cho, Y., Lai, J.-S.: Digital plug-in repetitive control for single-phase bridgeless PFC converters. IEEE Trans. Power Electron. 28(1), 165-175 (2013) https://doi.org/10.1109/TPEL.2012.2196288
  22. Adhikari, J., Prasanna, I.V., Panda, S.K.: Reduction of input current harmonic distortions and balancing of output voltages of the vienna rectifier under supply voltage disturbances. IEEE Trans. Power Electron. 32(7), 5802-5812 (2017) https://doi.org/10.1109/TPEL.2016.2611059
  23. Louganski, K.P., Lai, J.-S.: Current phase lead compensation in single-phase PFC boost converters with a reduced switching frequency to line frequency ratio. IEEE Trans. Power Electron. 62(4), 2184-2194 (2014)
  24. Ji, Q., Ruan, X., Xie, L., Ye, Z.: Conducted EMI spectra of average current controlled boost PFC converters operating in both CCM and DCM. IEEE Trans. Ind. Electron. 65(12), 9204-9214 (2018) https://doi.org/10.1109/tie.2018.2823662
  25. Ramos, G.A., Costa-Castello, R.: Power factor correction and harmonic compensation using second-order odd-harmonic repetitive control. IET Control Theory Appl. 6(11), 1633-1644 (2012) https://doi.org/10.1049/iet-cta.2011.0272
  26. Evran, F.: Plug-in repetitive control of single-phase grid-connected inverter for AC module applications. IET Power Electron. 10(1), 47-58 (2017) https://doi.org/10.1049/iet-pel.2015.0950
  27. Banerjee, S., Ghosh, A., Rana, N.: An improved interleaved boost converter with PSO-based optimal type-III controller. IEEE J. Emerg. Sel. Top. Power Electron. 5(1), 323-337 (2017) https://doi.org/10.1109/JESTPE.2016.2608504
  28. Yan, Y., Lee, F.C., Mattavelli, P., Liu, P.-H.: I2 average current mode control for switching converters. IEEE Trans. Power Electron. 29(4), 2027-2036 (2014) https://doi.org/10.1109/TPEL.2013.2265381
  29. Barry, B.C., Hayes, J.G., Ryan, R.T., Rylko, M.S., Stala, R.S., Penczek, A.P., Mondzik, A.: Digital type II compensation with forced-output control of an interleaved two-phase coupled-inductor boost converter. In: Proceedings of ECCE'17, pp. 8052-8064 (2017)
  30. Jeong, H.-G., Lee, J.-H., Lee, K.-B.: A 2nd order harmonic compensation method for wind power system using a PR controller. J. Electr. Eng. Technol. 8(3), 507-515 (2013) https://doi.org/10.5370/JEET.2013.8.3.507
  31. Sayyaf, N., Tavazoei, M.S.: Desirably adjusting gain margin, phase margin, and corresponding crossover frequencies based on frequency data. IEEE Trans. Ind. Inform. 13(5), 2311-2321 (2017) https://doi.org/10.1109/TII.2017.2681842
  32. Sang, Q., Tao, G.: Gain margins of adaptive control systems. IEEE Trans. Autom. 55(1), 104-115 (2010) https://doi.org/10.1109/TAC.2009.2034921
  33. Jo, J., Lee, T., Yun, D., Cha, H.: Analysis of current control stability using PI control in synchronous reference frame for grid-connected inverter with LCL filter. Trans. Korean Inst. Power Electron. 21(2), 168-174 (2016) https://doi.org/10.6113/TKPE.2016.21.2.168
  34. Park, J.-H., Lee, D.J., Lee, K.-B.: Predictive control algorithm including conduction-mode detection for PFC converter. IEEE Trans. Ind. Electron. 63(9), 5900-5911 (2016) https://doi.org/10.1109/TIE.2016.2578279