DOI QR코드

DOI QR Code

Optimal control strategy for excitation parameters of SRGs

  • Dou, Yuyu (State Grid East Inner Mongolia Electric Power Research Institute) ;
  • Chen, Dong (State Grid Weifang Electric Power Company)
  • Received : 2020.04.30
  • Accepted : 2020.08.31
  • Published : 2020.11.20

Abstract

To solve the inherent contradiction between convergence speed and optimization accuracy in the traditional optimal control strategy for the excitation parameters of SRGs, a novel optimal control strategy for the excitation parameters is proposed. In this strategy, the turn-off angle is fixed at its optimal value and kept constant, and the turn-on angle is optimized through two steps. In the first step, the optimal searching region of the turn-on angle is calculated by a fitting formula. Then in the second step, the golden section algorithm is used to optimize the turn-on angle. Meanwhile, the phase current amplitude is used as the degree of freedom necessary to regulate the generation power. Experimental results indicate that the novel optimal control strategy for excitation parameters can effectively improve convergence speed and efficiency of SRGs.

Keywords

References

  1. Barros, T.A.S., Neto, P.J.S., Filho, P.S.N., Moreira, A.B., Filho, E.R.: An approach for switched reluctance generator in a wind generation system with a wide range of operation speed. IEEE Trans. Power. Electron. Mag. 32(11), 8277-8292 (2017) https://doi.org/10.1109/TPEL.2017.2697822
  2. Choi, D., Byun, S., Cho, Y.: A study on the maximum power control method of switched reluctance generator for wind turbine. IEEE Trans. Mag. Mag. 50(1), 1-4 (2014)
  3. Sun, X., Diao, K., Lei, G., Guo, Y., Zhu, J.: Study on segmented-rotor switched reluctance motors with diferent rotor pole numbers for BSG system of hybrid electric vehicles. IEEE Trans. Veh. Technol. Mag. 68(6), 5537-5547 (2019) https://doi.org/10.1109/TVT.2019.2913279
  4. Bartolo, J.B., Degano, M., Espina, J., Gerada, C.: Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application. IEEE Trans. Ind. Electron. Mag. 64(2), 988-997 (2017) https://doi.org/10.1109/TIE.2016.2618342
  5. Valdivia, V., Todd, R., Bryan, F.J., Barrado, A., Lazaro, A., Forsyth, A.J.: Behavioral modeling of a switched reluctance generator for aircraft power systems. IEEE Trans. Ind. Electron. Mag. 61(6), 2690-2699 (2014)
  6. Ding, W., Liang, D.: A fast analytical model for an integrated switched reluctance starter/generator. IEEE Trans. Energy Convers. Mag. 25(4), 948-956 (2010) https://doi.org/10.1109/TEC.2010.2052620
  7. Cheng, H., Chen, H., Xu, S.H., Yang, S.Y.: Adaptive variable angle control in switched reluctance motor drives for electric vehicle applications. J Power Electron. Mag. 17(6), 1512-1522 (2017)
  8. Xu, Y.Z., Zhong, R., Chen, L., Lu, S.L.: Analytical method to optimize turn-on angle and turn-of angle for switched reluctance motor drives. IET Electr. Power Appl. Mag. 6(9), 593-603 (2012) https://doi.org/10.1049/iet-epa.2012.0157
  9. Mademlis, C., Kioskeridis, I.: Optimizing performance in current-controlled switched reluctance generators. IEEE Trans. Energy Convers. Mag. 20(3), 556-565 (2005) https://doi.org/10.1109/TEC.2005.852960
  10. Roshandel, E., Namazi, M.M., Rashidi, A., Saghaian, S.M., Ahn, J.: SSC strategy for SRG to achieve maximum power with minimum current ripple in battery charging. IET Electr. Power Appl. Mag. 11(7), 1205-1213 (2017) https://doi.org/10.1049/iet-epa.2016.0770
  11. Sikder, C., Husain, I., Sozer, Y.: Switched reluctance generator control for optimal power generation with current regulation. IEEE Trans. Ind. Appl. Mag. 50(1), 307-316 (2014) https://doi.org/10.1109/TIA.2013.2270971
  12. Sozer, Y., Torrey, D.A.: Closed loop control of excitation parameters for high speed switched-reluctance generators. IEEE Trans. Power. Electron. Mag. 19(2), 355-362 (2004) https://doi.org/10.1109/TPEL.2003.823178
  13. Yu, S.Y., Zhang, F.G., Lee, D.H., Ahn, J.W.: High efficiency operation of a switched reluctance generator over a wide speed range. J. Power Electron. Mag. 15(1), 123-130 (2015) https://doi.org/10.6113/JPE.2015.15.1.123