Acknowledgement
This research was supported by LG Electronics.
References
- Lucia, O., Burdio, J.M., Millan, I., Acero, J., Puyal, D.: Load-adaptive control algorithm of half-bridge series resonant inverter for domestic induction heating. IEEE Trans. Ind. Electron. 56(8), 3106-3116 (2009) https://doi.org/10.1109/TIE.2009.2022516
- Lucia, O., Maussion, P., Dede, E.J., Burdio, J.M.: Induction heating technology and its applications: Past developments, current technology, and future challenges. IEEE Trans. Ind. Electron. 61(5), 2509-2520 (2014) https://doi.org/10.1109/TIE.2013.2281162
- Forest, F., Laboure, E., Costa, F., Gaspard, J.Y.: Principle of a multiload/single converter system for low power induction heating. IEEE Trans. Power Electron. 15(2), 223-230 (2000) https://doi.org/10.1109/63.838094
- Dawson, F.P., Jain, P.: A comparison of load commutated inverter systems for induction heating and melting applications. IEEE Trans. Power Electron. 6(3), 430-441 (1991) https://doi.org/10.1109/63.85911
- Kamli, M., Yamamoto, S., Abe, M.: A 50-150 kHz half-bridge inverter for induction heating applications. IEEE Trans. Ind. Electron. 43(1), 163-172 (1996) https://doi.org/10.1109/41.481422
- Chakrabarti, A., Chakraborty, A., Sadhu, P.K.: A fuzzy self-tuning PID controller with a derivative flter for power control in induction heating systems. J. Power Electron. 17(6), 1577-1586 (2017) https://doi.org/10.6113/JPE.2017.17.6.1577
- Jimenez, O., Lucia, O., Urriza, I., Barragan, L.A., Mattavelli, P.: Controller for resonant converters applied to induction cooktops". IEEE Trans. Power Electron. 29(4), 2143-2152 (2014) https://doi.org/10.1109/TPEL.2013.2276041
- Jimenez, O., Lucia, O., Urriza, I., Barragan, L.A., Navarro, D.: Design and evaluation of a low-cost high-performance sigma-delta ADC for embedded control systems in induction heating appliances. IEEE Trans. Ind. Electron. 61(5), 2601-2611 (2014) https://doi.org/10.1109/TIE.2013.2278524
- Dominguez, A., Barragan, L.A., Otin, A., Navarro, D., Puyal, D.: Inverse-based power control in domestic induction-heating applications. IEEE Trans. Ind. Electron. 61(5), 2612-2621 (2014) https://doi.org/10.1109/TIE.2013.2281155
- Jimenez, O., Lucia, O., Urriza, I., Barragan, L.A., Navarro, D.: Power measurement for resonant power converters applied to induction heating applications. IEEE Trans. Power Electron. 29(12), 6779-6788 (2014) https://doi.org/10.1109/tpel.2014.2304675
- Acero, J., et al.: The domestic induction heating appliance: An overview of recent research. Proc. IEEE Appl. Power Electron. Conf. Expo. 1, 651-657 (2008)
- Nakamizo, T., et al.: New generation fuid heating appliance using high frequency load resonant inverter. Proc. IEEE Int. Conf. Power Electron. Drive Syst. 1, 309-314 (1999)
- Shin, W.-S., Park, H.-C.: Inverter for induction heating using simultaneous dual-frequency method. Trans. Korean Inst. Power Electron. 16(6), 554-560 (2011) https://doi.org/10.6113/TKPE.2011.16.6.554
- Kawaguchi, Y., Hiraki, E., Tanaka, T., Nakaoka, M.: Basic study of a phase-shifted soft switching high-frequency inverter with boost PFC converter for induction heating. J. Power Electron. 8(2), 192-199 (2008)
- Mishima, T., Nakaoka, M.: A load-power adaptive dual pulse modulated current phasor-controlled ZVS high-frequency resonant inverter for induction heating applications. IEEE Trans. Power Electron. 29(8), 3864-3880 (2014) https://doi.org/10.1109/TPEL.2013.2288985
- Esteve, V., et al.: Enhanced pulse-density-modulated power control for high frequency induction heating inverters. IEEE Trans. Ind. Electron. 62(11), 6905-6914 (2015) https://doi.org/10.1109/TIE.2015.2436352
- Ahmed, N.A.: High-frequency soft-switching AC conversion circuit with dual-mode PWM/PDM control strategy for high-power IH applications. IEEE Trans. Ind. Electron. 58(4), 1440-1448 (2011) https://doi.org/10.1109/TIE.2010.2050752
- Yachiangkam, S., Sangswang, A., Naetiladdanon, S., Koompai, C., Chudjuarjeen, S.: Steady-state analysis of ZVS and NON-ZVS full-bridge inverters with asymmetrical control for induction heating applications. J. Power Electron. 15(2), 544-554 (2015). https://doi.org/10.6113/JPE.2015.15.2.544
- Koertzen, H. W. E., van Wyk, J. D., Ferreira, J. A.: An investigation of the analytical computation of inductance and AC resistance of the heat-coil for induction cookers. In: Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting, vol. 1, pp. 1113-1119. Houston (1992).
- Park, H., Jung, J.: Load-adaptive modulation of a series-resonant inverter for all-metal induction heating applications. IEEE Trans. Industr. Electron. 65(9), 6983-6993 (2018) https://doi.org/10.1109/tie.2018.2793270
- Millan, I., Burdio, J.M., Acero, J., Lucia, O., Llorente, S.: Series resonant inverter with selective harmonic operation applied to all-metal domestic induction heating. IET Power Electron. 4(5), 587-592 (2011) https://doi.org/10.1049/iet-pel.2010.0107
- Sadakata, H. et al.: Latest practical developments of triplex series load resonant frequency-operated high frequency inverter for induction-heated low resistivity metallic appliances in consumer built-in cooktops. In: 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1825-1832. Palm Springs (2010).
- Steigerwald, R.L.: A comparison of half-bridge resonant converter topologies. IEEE Trans. Power Electron. 3(2), 174-182 (1988) https://doi.org/10.1109/63.4347
- Zhao, Z., Xu, Q., Dai, Y., Luo, A.: Minimum resonant capacitor design of high-power LLC resonant converter for comprehensive efciency improvement in battery charging application. IET Power Electron. 11(11), 1866-1874 (2018) https://doi.org/10.1049/iet-pel.2017.0649
- Lucia, O., Maussion, P., Dede, E.J., Burdio, J.M.: Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Trans. Industr. Electron. 61(5), 2509-2520 (2014) https://doi.org/10.1109/TIE.2013.2281162
- Puyal, D., Bernal, C., Burdio, J. M., Millan I., Acero, J.: A new dynamic electrical model of domestic induction heating loads. In: 2C Annual IEEE Applied Power Electronics Conference and Exposition, pp. 409-414. Austin (2008).