DOI QR코드

DOI QR Code

Input voltage selection method of half-bridge series resonant inverters for all-metal induction heating applications using high turn-numbered coils

  • Jin, Juil (School of Electrical Engineering, Ulsan National Institute of Science and Technology) ;
  • Kim, Mina (School of Electrical Engineering, Ulsan National Institute of Science and Technology) ;
  • Han, Jinwook (Cooking Control Team, LG Electronics) ;
  • Kang, Kyelyong (Cooking Control Team, LG Electronics) ;
  • Jung, Jee-Hoon (School of Electrical Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2020.04.28
  • Accepted : 2020.08.31
  • Published : 2020.11.20

Abstract

All-metal induction heating (IH) systems have been introduced to heat both ferromagnetic and non-ferromagnetic pots using dual resonant frequencies. They are designed for heating ferromagnetic pots using a first harmonic operation mode (FHOM) and for heating the non-ferromagnetic pots using a third harmonic operation mode (THOM). All-metal IH systems employing dual resonant frequencies consist of an IH inverter and a power factor correction (PFC) circuit to transfer desired power to pots by increasing the input voltage of the IH inverter. In this paper, the input voltage is designed to obtain an efficiency-optimized operating point. To obtain an appropriate input voltage, power loss analyses are conducted using first harmonic approximation (FHA). Based on analysis results, the input voltage of the IH inverter can be selected to improve its power conversion efficiency. A 2-kW half-bridge series resonant inverter prototype is implemented to verify the effectiveness of the proposed design by heating ferromagnetic pots using the FHOM with a 2-kW transfer power and by heating non-ferromagnetic pots using the THOM with a 1-kW transfer power.

Keywords

Acknowledgement

This research was supported by LG Electronics.

References

  1. Lucia, O., Burdio, J.M., Millan, I., Acero, J., Puyal, D.: Load-adaptive control algorithm of half-bridge series resonant inverter for domestic induction heating. IEEE Trans. Ind. Electron. 56(8), 3106-3116 (2009) https://doi.org/10.1109/TIE.2009.2022516
  2. Lucia, O., Maussion, P., Dede, E.J., Burdio, J.M.: Induction heating technology and its applications: Past developments, current technology, and future challenges. IEEE Trans. Ind. Electron. 61(5), 2509-2520 (2014) https://doi.org/10.1109/TIE.2013.2281162
  3. Forest, F., Laboure, E., Costa, F., Gaspard, J.Y.: Principle of a multiload/single converter system for low power induction heating. IEEE Trans. Power Electron. 15(2), 223-230 (2000) https://doi.org/10.1109/63.838094
  4. Dawson, F.P., Jain, P.: A comparison of load commutated inverter systems for induction heating and melting applications. IEEE Trans. Power Electron. 6(3), 430-441 (1991) https://doi.org/10.1109/63.85911
  5. Kamli, M., Yamamoto, S., Abe, M.: A 50-150 kHz half-bridge inverter for induction heating applications. IEEE Trans. Ind. Electron. 43(1), 163-172 (1996) https://doi.org/10.1109/41.481422
  6. Chakrabarti, A., Chakraborty, A., Sadhu, P.K.: A fuzzy self-tuning PID controller with a derivative flter for power control in induction heating systems. J. Power Electron. 17(6), 1577-1586 (2017) https://doi.org/10.6113/JPE.2017.17.6.1577
  7. Jimenez, O., Lucia, O., Urriza, I., Barragan, L.A., Mattavelli, P.: Controller for resonant converters applied to induction cooktops". IEEE Trans. Power Electron. 29(4), 2143-2152 (2014) https://doi.org/10.1109/TPEL.2013.2276041
  8. Jimenez, O., Lucia, O., Urriza, I., Barragan, L.A., Navarro, D.: Design and evaluation of a low-cost high-performance sigma-delta ADC for embedded control systems in induction heating appliances. IEEE Trans. Ind. Electron. 61(5), 2601-2611 (2014) https://doi.org/10.1109/TIE.2013.2278524
  9. Dominguez, A., Barragan, L.A., Otin, A., Navarro, D., Puyal, D.: Inverse-based power control in domestic induction-heating applications. IEEE Trans. Ind. Electron. 61(5), 2612-2621 (2014) https://doi.org/10.1109/TIE.2013.2281155
  10. Jimenez, O., Lucia, O., Urriza, I., Barragan, L.A., Navarro, D.: Power measurement for resonant power converters applied to induction heating applications. IEEE Trans. Power Electron. 29(12), 6779-6788 (2014) https://doi.org/10.1109/tpel.2014.2304675
  11. Acero, J., et al.: The domestic induction heating appliance: An overview of recent research. Proc. IEEE Appl. Power Electron. Conf. Expo. 1, 651-657 (2008)
  12. Nakamizo, T., et al.: New generation fuid heating appliance using high frequency load resonant inverter. Proc. IEEE Int. Conf. Power Electron. Drive Syst. 1, 309-314 (1999)
  13. Shin, W.-S., Park, H.-C.: Inverter for induction heating using simultaneous dual-frequency method. Trans. Korean Inst. Power Electron. 16(6), 554-560 (2011) https://doi.org/10.6113/TKPE.2011.16.6.554
  14. Kawaguchi, Y., Hiraki, E., Tanaka, T., Nakaoka, M.: Basic study of a phase-shifted soft switching high-frequency inverter with boost PFC converter for induction heating. J. Power Electron. 8(2), 192-199 (2008)
  15. Mishima, T., Nakaoka, M.: A load-power adaptive dual pulse modulated current phasor-controlled ZVS high-frequency resonant inverter for induction heating applications. IEEE Trans. Power Electron. 29(8), 3864-3880 (2014) https://doi.org/10.1109/TPEL.2013.2288985
  16. Esteve, V., et al.: Enhanced pulse-density-modulated power control for high frequency induction heating inverters. IEEE Trans. Ind. Electron. 62(11), 6905-6914 (2015) https://doi.org/10.1109/TIE.2015.2436352
  17. Ahmed, N.A.: High-frequency soft-switching AC conversion circuit with dual-mode PWM/PDM control strategy for high-power IH applications. IEEE Trans. Ind. Electron. 58(4), 1440-1448 (2011) https://doi.org/10.1109/TIE.2010.2050752
  18. Yachiangkam, S., Sangswang, A., Naetiladdanon, S., Koompai, C., Chudjuarjeen, S.: Steady-state analysis of ZVS and NON-ZVS full-bridge inverters with asymmetrical control for induction heating applications. J. Power Electron. 15(2), 544-554 (2015). https://doi.org/10.6113/JPE.2015.15.2.544
  19. Koertzen, H. W. E., van Wyk, J. D., Ferreira, J. A.: An investigation of the analytical computation of inductance and AC resistance of the heat-coil for induction cookers. In: Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting, vol. 1, pp. 1113-1119. Houston (1992).
  20. Park, H., Jung, J.: Load-adaptive modulation of a series-resonant inverter for all-metal induction heating applications. IEEE Trans. Industr. Electron. 65(9), 6983-6993 (2018) https://doi.org/10.1109/tie.2018.2793270
  21. Millan, I., Burdio, J.M., Acero, J., Lucia, O., Llorente, S.: Series resonant inverter with selective harmonic operation applied to all-metal domestic induction heating. IET Power Electron. 4(5), 587-592 (2011) https://doi.org/10.1049/iet-pel.2010.0107
  22. Sadakata, H. et al.: Latest practical developments of triplex series load resonant frequency-operated high frequency inverter for induction-heated low resistivity metallic appliances in consumer built-in cooktops. In: 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1825-1832. Palm Springs (2010).
  23. Steigerwald, R.L.: A comparison of half-bridge resonant converter topologies. IEEE Trans. Power Electron. 3(2), 174-182 (1988) https://doi.org/10.1109/63.4347
  24. Zhao, Z., Xu, Q., Dai, Y., Luo, A.: Minimum resonant capacitor design of high-power LLC resonant converter for comprehensive efciency improvement in battery charging application. IET Power Electron. 11(11), 1866-1874 (2018) https://doi.org/10.1049/iet-pel.2017.0649
  25. Lucia, O., Maussion, P., Dede, E.J., Burdio, J.M.: Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Trans. Industr. Electron. 61(5), 2509-2520 (2014) https://doi.org/10.1109/TIE.2013.2281162
  26. Puyal, D., Bernal, C., Burdio, J. M., Millan I., Acero, J.: A new dynamic electrical model of domestic induction heating loads. In: 2C Annual IEEE Applied Power Electronics Conference and Exposition, pp. 409-414. Austin (2008).