DOI QR코드

DOI QR Code

Signal injection method without torque ripple for stator winding temperature estimation of surface-mounted PMSM drive systems

  • Fang, Jie (School of Electronics and Information Engineering, Anhui University) ;
  • Ding, Shichuan (School of Electronic Engineering and Automation, Anhui University) ;
  • Sun, Yining (Institute of Intelligent Machines, Chinese Academy of Sciences) ;
  • Hang, Jun (Shenzhen Research Institute, Southeast University)
  • Received : 2020.05.14
  • Accepted : 2020.09.03
  • Published : 2020.11.20

Abstract

A signal injection method without torque ripple is presented to estimate the stator winding temperature of a surface-mounted permanent magnet synchronous machine (PMSM), where the temperature is estimated based on the stator resistance. First, the current signal (Δid*) is injected into the current control loop to produce DC current offsets used to calculate the stator resistance, where the injected signal cannot lead to extra torque ripple. Then the temperature can be obtained based on the relationship between the stator winding temperature and the stator resistance. Finally, the proposed method is validated by simulation and experimental results. In addition, no extra equipment is needed for the proposed method.

Keywords

Acknowledgement

This work is supported by the Shenzhen Science and Technology Innovation Committee (STIC) (JCYJ20170817164807994) and the Science and Technology Project of Guangxi Power Grid (0401002018030103WX00100). Thanks to Southeast University for providing the experimental platform.

References

  1. Hang, J., Wu, H., Zhang, J., Ding, S., Huang, Y., Hua, W.: Cost Function-based open-phase fault diagnosis for PMSM drive system with model predictive current control. IEEE Trans. Power Electron. (2020). https://doi.org/10.1109/TPEL.2020.3011450
  2. Wang, W., Feng, Y., Shi, Y., Cheng, M., Hua, W., Wang, Z.: Fault-tolerant control of primary permanent-magnet linear motors with single phase current sensor for subway applications. IEEE Trans. Power Electron 34(11), 10546-10556 (2019) https://doi.org/10.1109/tpel.2019.2899168
  3. Hang, J., Wu, H., Ding, S., Hua, W., Wang, Q.: A dc-flux-injection method for fault diagnosis of high-resistance connection in direct-torque-controlled PMSM drive system. IEEE Trans. Power Electron. 35(3), 3029-3042 (2020) https://doi.org/10.1109/tpel.2019.2924929
  4. Milanfar, P., Lang, J.H.: Monitoring the thermal condition of permanent-magnet synchronous motors. IEEE Trans. Aerosp. Electron. Syst. 32(4), 1421-1429 (1996) https://doi.org/10.1109/7.543863
  5. He, L., Cheng, S., Du, Y., Harley, R.G., Habetler, T.G.: Stator temperature estimation of direct-torque-controlled induction machines via active flux or torque injection. IEEE Trans. Power Electron. 30(2), 888-899 (2015) https://doi.org/10.1109/TPEL.2014.2310902
  6. Lee, B.H., Kim, K.S., Jung, J., Hong, W.J.P., Kim, Y.K.: Temperature estimation of IPMSM using thermal equivalent circuit. IEEE Trans. Magn. 48(11), 2949-2952 (2012) https://doi.org/10.1109/TMAG.2012.2196503
  7. Grobler, A., Holm, S., Van Schoor, G.: A two-dimensional analytic thermal model for a high-speed PMSM magnet. IEEE Trans. Ind. Electron. 62(11), 6756-6764 (2015) https://doi.org/10.1109/TIE.2015.2435693
  8. Boglietti, J.A., Cavagnino, A., Lazzari, M., Pastorelli, M.: A simplified thermal model for variable-speed self-cooled industrial induction motor. IEEE Trans. Ind. Appl. 39(4), 945-952 (2003) https://doi.org/10.1109/TIA.2003.814555
  9. Kral, C., Haumer, A., Lee, S.B.: Practical thermal model for the estimation of permanent magnet and stator winding temperatures. IEEE Trans. Power Electron. 29(1), 455-464 (2014) https://doi.org/10.1109/TPEL.2013.2253128
  10. Wilson, S.D., Stewart, P., Stewart, J.: Real-time thermal management of permanent magnet synchronous motors by resistance estimation. IET Electr. Power Appl. 6(9), 716-726 (2012) https://doi.org/10.1049/iet-epa.2010.0232
  11. Zhang, P., Lu, B., Habetler, T.G.: A remote and sensorless stator winding resistance estimation method for thermal protection of softs tarter-connected induction machines. IEEE Trans. Ind. Electron. 55(10), 3611-3618 (2008) https://doi.org/10.1109/TIE.2008.927241
  12. Cheng, S., Du, Y., Restrepo, J.A., Zhang, P., Habetler, T.G.: A nonintrusive thermal monitoring method for induction motors fed by closed-loop inverter drives. IEEE Trans. Power Electron. 27(9), 4122-4131 (2012) https://doi.org/10.1109/TPEL.2012.2188045
  13. He, L., Restrepo, J., Cheng, S., Harley, R. G., and Habetler, T. G.: An improved DC-signal-injection method with active torque-ripple mitigation for thermal monitoring of field-oriented-controlled induction motors. In: IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4447-4454 (2015)
  14. Zhao, W., Cheng, M., Chau, K.T., Hua, W., Jia, H., Ji, J., Li, W.: Stator-flux-oriented fault-tolerant control of flux-switching permanent-magnet motors. IEEE Trans. Magn. 47(10), 4191-4194 (2011) https://doi.org/10.1109/TMAG.2011.2157106
  15. Hang, J., Wu, H., Ding, S., Huang, Y., Hua, W.: Improved loss minimization control for IPMSM using equivalent conversion method. IEEE Trans. Power Electron. (2020). https://doi.org/10.1109/TPEL.2020.3012018
  16. Urasaki, N., Senjyu, T., Uezato, K., Funabashi, T.: Adaptive dead-time compensation strategy for permanent magnet synchronous motor drive. IEEE Trans. Energy Convers. 22(2), 271-280 (2007) https://doi.org/10.1109/TEC.2006.875469
  17. Ouanjli, N., Derouich, A., Ghzizal, A., Motahhir, S., Chebabhi, A., Mourabit, Y., Taoussi, M.: Modern improvement techniques of direct torque control for induction motor drives-a review. Protect. Control Mod. Power Syst. 4(2), 136-147 (2019)
  18. de la Barrera, P.M., Bossio, G.R., Leidhold, R.: On-line voltage sensorless high-resistance connection diagnosis in induction motor drives. IEEE Trans. Ind. Electron. 62(7), 4374-4384 (2015) https://doi.org/10.1109/TIE.2014.2385038
  19. An, Q., Sun, L., Zhao, K., Sun, L.: Switching function model-based fast-diagnostic method of open-switch faults in inverters without sensors. IEEE Trans. Power Electron. 26(1), 119-126 (2011) https://doi.org/10.1109/TPEL.2010.2052472
  20. Hang, J., Xia, M., Ding, S., Li, Y., Sun, L., Wang, Q.: Research on vector control strategy of surface-mounted permanent magnet synchronous machine drive system with high-resistance connection. IEEE Trans. Power Electron. 35(2), 2023-2033 (2020) https://doi.org/10.1109/tpel.2019.2918683