DOI QR코드

DOI QR Code

Battery-inductor-supercapacitor hybrid energy storage system for DC microgrids

  • Dam, Duy-Hung (Department of Electrical Engineering, University of Ulsan) ;
  • Lee, Hong-Hee (Department of Electrical Engineering, University of Ulsan)
  • Received : 2019.09.10
  • Accepted : 2019.11.14
  • Published : 2020.01.20

Abstract

This paper presents a new configuration for a hybrid energy storage system (HESS) called a battery-inductor-supercapacitor HESS (BLSC-HESS). It splits power between a battery and supercapacitor and it can operate in parallel in a DC microgrid. The power sharing is achieved between the battery and the supercapacitor by combining an internal battery resistor and an output LSC filter, which consists of a supercapacitor and an inductor. The battery current is smoothened to supply and receive only the low-frequency current component under any disturbance and load condition through cooperation with the supercapacitor. Complete guidelines to design the parameters of the BLSC-HESS are also presented. Simulation and experimental results demonstrate that the proposed BLSC-HESS configuration achieves a high-stability performance and a lower cost, and is easily applied to DC microgrids.

Keywords

Acknowledgement

This work was supported in part by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2018R1D1A1A09081779) and in part by the KETEP and the MOTIE (No. 20194030202310).

References

  1. Boicea, V.A.: Energy storage technologies: the past and the present. Proc. IEEE 102(11), 1777-1794 (2014) https://doi.org/10.1109/JPROC.2014.2359545
  2. Hung, S.T., Hopkins, D.C., Mosling, C.R.: Extension of battery life via charge equalization control. IEEE Trans. Ind. Electron. 40(1), 96-104 (1993)
  3. Etxeberria, A., Vechiu, I., Camblong, H., Vinassa, J.M., Camblong, H.: Hybrid energy storage systems for renewable energy sources integration in microgrids: a review. In: 2010 Conference Proceedings IPEC, pp. 532-537 (2010)
  4. Dougal, R.A., Liu, S., White, R.E.: Power and life extension of battery-ultracapacitor hybrids. IEEE Trans. Compon. Packag. Technol. 25(1), 120-131 (2002) https://doi.org/10.1109/6144.991184
  5. Smith, T.A., Mars, J.P., Turner, G.A.: Using supercapacitors to improve battery performance. In: 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289), vol. 1, pp. 124-128 (2002)
  6. Kwasinski, A.: Identification of feasible topologies for multiple-input DC-DC converters. IEEE Trans. Power Electron. 24(3), 856-861 (2009) https://doi.org/10.1109/TPEL.2008.2009538
  7. Liu, Y.C., Chen, Y.M.: A systematic approach to synthesizing multi-input DC-DC converters. IEEE Trans. Power Electron. 24(1), 116-127 (2009) https://doi.org/10.1109/TPEL.2008.2009170
  8. Behjati, H., Davoudi, A.: A multiple-input multiple-output DC-DC converter. IEEE Trans. Ind. Appl. 49(3), 1464-1479 (2013) https://doi.org/10.1109/TIA.2013.2253440
  9. Hintz, A., Prasanna, U.R., Rajashekara, K.: Novel modular multiple-input bidirectional DC-DC power converter (MIPC) for HEV/FCV application. IEEE Trans. Ind. Electron. 62(5), 3163-3172 (2015) https://doi.org/10.1109/TIE.2014.2371778
  10. Xu, Q., et al.: A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous DC microgrid. IEEE Trans. Ind. Electron. 64(99), 1 (2016)
  11. Xu, Q., Xiao, J., Hu, X., Wang, P., Lee, M.Y.: A decentralized power management strategy for hybrid energy storage system with autonomous bus voltage restoration and state of charge recovery. IEEE Trans. Ind. Electron. 0046(9), 7098-7108 (2017) https://doi.org/10.1109/TIE.2017.2686303
  12. Kollimalla, S.K., Mishra, M.K., Ukil, A., Gooi, H.B.: DC grid voltage regulation using new HESS control strategy. IEEE Trans. Sustain. Energy 3029(c), 1 (2016)
  13. Yuhimenko, V., Lerman, C., Kuperman, A.: DC active power filter-based hybrid energy source for pulsed power loads. IEEE J. Emerg. Sel. Top. Power Electron. 3(4), 1001-1010 (2015) https://doi.org/10.1109/JESTPE.2015.2421305
  14. Hamzeh, M., Ghafouri, M., Karimi, H., Sheshyekani, K., Guerrero, J.M.: Power oscillations damping in DC microgrids. IEEE Trans. Energy Convers. 31(3), 970-980 (2016) https://doi.org/10.1109/TEC.2016.2542266
  15. Zhao, Xin, et al.: Energy management strategy of multiple super-capacitors in a DC microgrid using adaptive virtual impedance. IEEE J. Emerg. Sel. Top. Power Electron. 4(4), 1-8 (2016) https://doi.org/10.1109/JESTPE.2015.2513558
  16. Gu, Y., Li, W., He, X.: Frequency-coordinating virtual impedance for autonomous power management of DC microgrid. IEEE Trans. Power Electron. 30(4), 2328-2337 (2015) https://doi.org/10.1109/TPEL.2014.2325856
  17. Zhang, Y., Li, Y.: Energy management strategy for supercapacitor in autonomous DC microgrid using virtual impedance. In: IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 725-730 (2015)
  18. Zhao, X., Wu, X., Li, Y., Tian, H.: Energy management strategy of multiple supercapacitors in an autonomous DC microgrid using adaptive virtual impedance. In 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1-8 (2016)
  19. Dam, D.-H., Hoang, D.-K., Chun, T.-W., Lee, H.-H.: A hybrid energy storage system for transient load and its multiple operation in DC microgrid. In: 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), pp. 314-319 (2018)
  20. Chen, M., Rincon-Mora, G.A.: Accurate electrical battery model capable of predicting runtime and I-V performance. IEEE Trans. Energy Convers. 21(2), 504-511 (2006) https://doi.org/10.1109/TEC.2006.874229
  21. Ran, L., Junfeng, W., Haiying, W., Gechen, L.: Prediction of state of charge of lithium-ion rechargeable battery with electrochemical impedance spectroscopy theory. In: 2010 5th IEEE Conference on Industrial Electronics and Applications, pp. 684-688 (2010)
  22. Shen, J., Khaligh, A.: A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system. IEEE Trans. Transp. Electrif. 1, 223-231 (2015) https://doi.org/10.1109/TTE.2015.2464690

Cited by

  1. Offset error compensation algorithm for grid voltage measurement of grid-connected single-phase inverters based on SRF-PLL vol.20, pp.3, 2020, https://doi.org/10.1007/s43236-020-00077-9
  2. Integrated control scheme for dynamic power management with improved voltage regulation in DC microgrid vol.20, pp.6, 2020, https://doi.org/10.1007/s43236-020-00152-1