DOI QR코드

DOI QR Code

Fixed-frequency phase-shift modulated PV-MPPT for LLC resonant converters

  • 투고 : 2019.03.07
  • 심사 : 2019.08.26
  • 발행 : 2020.01.20

초록

The micro-inverter has attracted a great deal of attention in PV systems since it offers a superior solution for the shading problem in wide spreading of AC module technology, where each PV module has its own power conditioner. The micro-inverter is implemented from two-stages: DC-DC conversion and DC-AC conversion. This paper focuses on the first-stage of the micro-inverter including its high-gain and maximum power point tracking (MPPT). To achieve these features, an efficient MPPT algorithm is proposed for the LLC resonant-converter. Resonant converters are very promising topologies, due to their inherent features such as high-efficiency and very high-switching-frequency operation. Consequently, they have a small footprint and low switching losses due to zero-voltage-switching (ZVS) operation. To include resonant converters in PV applications, MPPT control is applied. Due to the non-symmetrical operation nature of resonant converters and pulse width modulated converters, the traditional MPPT techniques found in the literature are not suitable for direct application to the resonant converters. They need to be well-tuned before application to a resonant converter. To ease the usage of resonant converters in PV applications, this paper develops a novel phase-shift fixed-frequency MPPT algorithm that is compatible with the LLC resonant converter. It also reduces the EMI when compared to variable-frequency modulation due to the use of ZVS and a fixed frequency. The proposed MPPT technique achieves good performance, high steady-state efficiency and good dynamic response. The complete design procedure and analysis for the proposed MPPT phase-shift algorithm are presented in this paper. Finally, the presented system is validated based on PSIM simulations and hardware implementation on a 300-W prototype.

키워드

과제정보

This work is funded in part by the Egyptian Science and Technology Development Funds (STDF) project ID: 15261.

참고문헌

  1. Obeidat, F.: A comprehensive review of future photovoltaic systems. Solar Energy 163, 545-551 (2018) https://doi.org/10.1016/j.solener.2018.01.050
  2. Celik, O., Teke, A., Tan, A.: Overview of micro-inverters as a challenging technology in photovoltaic applications. Renew. Sustain. Energy Rev. 82, 3191-3206 (2018) https://doi.org/10.1016/j.rser.2017.10.024
  3. Abdel-Rahim, O., Funato, H., Haruna, J.: Gird-connected boost inverter for low power pv applications with model predictive control. IET J. Eng. 28, 318-326 (2017)
  4. Chen, L., Amirahmadi, A., Zhang, Q., Kutkut, N., Batarseh, I.: Design and implementation of three-phase two-stage grid-connected module integrated converter. IEEE Trans. Power Electron. 29, 3881-3892 (2014) https://doi.org/10.1109/TPEL.2013.2294933
  5. Abdel-Rahim, O., Funato, H., Haruna, J.: An efficient and high-gain inverter based on the 3S inverter employs model predictive control for PV. J. Electr. Eng. Technol. 12(4), 1484-1494 (2017) https://doi.org/10.5370/JEET.2017.12.4.1484
  6. Choi, W.Y., Choi, J.Y.: High-efficiency power conditioning system for grid-connected photovoltaic modules. J. Power Electron. 11, 561-567 (2011) https://doi.org/10.6113/JPE.2011.11.4.561
  7. Murata, K., Kurokawa, F.: An interleaved PFM LLC resonant converter with phase-shift compensation. IEEE Trans. Power Electron. 31(3), 2264-2272 (2016) https://doi.org/10.1109/TPEL.2015.2427735
  8. Kjaer, S.B., Pedersen, J.K., Blaabjerg, F.: A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl. 41, 1292-1306 (2005) https://doi.org/10.1109/TIA.2005.853371
  9. Ahmed, M.E., Orabi, M., AbdelRahim, O.M.: Two-stage micro-grid inverter with high-voltage gain for photovoltaic applications. IET Power Electron. 6(9), 1812-1821 (2013) https://doi.org/10.1049/iet-pel.2012.0666
  10. Abdel-Rahim, O., Funato, H., Haruna, J.: A comprehensive study of three high gain dc-dc topologies based on cockcroft-walton voltage-multiplier for reduced power pv applications. IEEJ. Trans. Electr. Electron. Eng. 13, 642-651 (2018) https://doi.org/10.1002/tee.22611
  11. Atia, Y., Salem, M.: Microcontroller-based improved predictive current controlled VSI for single-phase grid-connected systems. JPE 13(6), 1016-1023 (2013)
  12. Darwish, A., Holliday, D., Ahmed, S., Massoud, A.M., Williams, B.W.: A single-stage three-phase inverter based on Cuk converters for PV applications. IEEE J Emerg. Select. Top. Power Electron. 2, 797-807 (2014) https://doi.org/10.1109/JESTPE.2014.2313185
  13. Bai, C., Han, B., Kim, M.: Current-fed dual-half-bridge converter directly connected with half-bridge inverter for residential photovoltaic system. Solar Energy 174, 108-120 (2018) https://doi.org/10.1016/j.solener.2018.08.039
  14. Ryu, D.-K., Choi, B.-Y., Lee, S.-R., Kim, Y.-H., Won, C.-Y.: Flyback inverter using voltage sensorless MPPT for photovoltaic AC modules. J. Power Electron. 14, 1293-1302 (2014) https://doi.org/10.6113/JPE.2014.14.6.1293
  15. Abdel-Rahim, O., Abu-Rub, H., Kouzou, A.: Nine-to-three phase direct matrix converter with model predictive control for wind generation system. Energy Proced. 42C, 173-182 (2013) https://doi.org/10.1016/j.egypro.2013.11.017
  16. Kwak, Sang-Shin: Investigation of fault-mode behaviors of matrix converters. JPE 9(6), 949-959 (2009)
  17. Abdel-rahim, O., Abu-rub, H., Ahmed, S.M.: Space vector PWM for a five to three matrix converter. In: 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2013, pp. 3246-3250
  18. Park, C., Cho, S., Jang, J., Pidaparthy, S., Ahn, T., Choi, B.: Average current mode control for LLC series resonant DC-to-DC converters. JPE 14(1), 40-47 (2014)
  19. Yi, K., Moon, G.: A novel two phase interleaved LLC series resonant converter using a phase of the resonant capacitor. JPE 8(3), 275-279 (2008)
  20. Lin, Bor-Ren, Shen, Sin-Jhih: Interleaved ZVS resonant converter with a parallel-series connection. JPE 12(4), 528-537 (2012)
  21. Beiranvand, R., Rashidian, B., Zolghadri, M.R., Alavi, S.M.H.: Using LLC resonant converter for designing wide-range voltage source. IEEE Trans. Industr. Electron. 58, 1746-1756 (2011) https://doi.org/10.1109/TIE.2010.2052537
  22. Rashid, M.H., Hui, S.Y., Shu-Hung Chung, H.: 12-Resonant and soft-switching converters. In: Rashid, M.H. (ed.) Power electronics handbook, 4th edn, pp. 339-383. Butterworth-Heinemann, Oxford (2018)
  23. Steigerwald, R.L.: A comparison of half-bridge resonant converter topologies. IEEE Trans. Power Electron. 3, 174-182 (1988) https://doi.org/10.1109/63.4347
  24. Harischandrappa, N., Bhat, S.: A fixed-frequency LCL-type series resonant converter with a capacitive output filter using a modified gating scheme. IEEE Trans. Ind. Appl. 50(6), 4056-4064 (2014) https://doi.org/10.1109/TIA.2014.2323471
  25. Salem, M., Jusoh, A., Idris, N.R.N., Alhamrouni, I.: A review of an inductive power transfer system for EV battery charger. Eur. J. Sci. Res. 134, 41-56 (2015)
  26. Mao, S., Popovic, J., Ramabhadran, R., Ferreira, J.A.: Comparative study of half-bridge LCC and LLC resonant DC-DC converters for ultra-wide output power range applications. In: 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe), pp. 1-10 (2015)
  27. Choi, H.-S.: Design consideration of half-Bridge LLC resonant converter. JPE 7, 13-20 (2007)
  28. Fang, X.: Analysis and Design Optimization of Resonant DC-DC Converters. Thesis, University of Central Florida Orlando, Florida (2012)
  29. Li, S., Liao, H., Yuan, H., Ai, Q., Chen, K.: A MPPT strategy with variable weather parameters through analyzing the effect of the DC/DC converter to the MPP of PV system. Solar Energy 144, 175-184 (2017) https://doi.org/10.1016/j.solener.2017.01.002
  30. Alamir, N., Abdel-Rahim, O., Ismeil, M., Orabi, M., Kennel, R.: Fixed frequency predictive MPPT forphase-shift modulated LLC resonant micro-inverter. In: 2018 20th European Conference on Power Electronics and Applications EPE'18 ECCE Europe), Riga, Latvia, pp. 1-9 (2018)
  31. Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439-449 (2007) https://doi.org/10.1109/TEC.2006.874230
  32. Abdel-Rahim, O., Funato, H., Haruna, J.: Novel predictive maximum power point tracking techniques for photovoltaic applications. J. Power Electron. 16(1), 277-286 (2016) https://doi.org/10.6113/JPE.2016.16.1.277
  33. Zainuri, M.A.A.M., Radzi, M.A.M., Soh, A.C., Rahim, N.A.: Development of adaptive perturb and observe-fuzzy control maximum power point tracking for photovoltaic boost dc-dc converter. IET Renew. Power Gen. 8, 183-194 (2014) https://doi.org/10.1049/iet-rpg.2012.0362
  34. Messaltia, S., Harragab, A., Loukrizc, A.: A new variable step size neural networks MPPT controller: review, simulation and hardware implementation. Renew. Sustain. Energy Rev. 68, 221-233 (2017) https://doi.org/10.1016/j.rser.2016.09.131
  35. Abdel-Rahim, O., Funato, H.: An experimental investigation of modified predictive hysteresis control based MPPT strategy for PV applications. In: Energy Conversion Congress and Exposition (ECCE), 2015 IEEE, 20-24 Sept. 2015, Montreal, QC, pp. 6450-6454
  36. Ahmed, E.M., Shoyama, Masahito: Variable step size maximum power point tracker using a single variable for stand-alone battery storage PV systems. JPE 11(2), 218-227 (2011)
  37. Ahmed, J., Salam, Z.: An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions. IEEE Trans. Sustain. Energy 9, 1487-1496 (2018) https://doi.org/10.1109/TSTE.2018.2791968
  38. Zhang, Q., et al.: A center point iteration MPPT method with application on the frequency-modulated LLC microinverter. IEEE Trans. Power Electron. 29(3), 1262-1274 (2014) https://doi.org/10.1109/TPEL.2013.2262806
  39. Zhang, Q., Hu, C., Chen, L., Amirahmadi, A., Kutkut, N., Shen, Z.J., et al.: A center point iteration MPPT method with application on the frequency-modulated LLC microinverter. IEEE Trans. Power Electron. 29, 1262-1274 (2014) https://doi.org/10.1109/TPEL.2013.2262806
  40. Park, Hwa-Pyeong, Jung, Jee-Hoon: Modeling and feedback control of LLC resonant converters at high switching frequency. JPE 16(3), 849-860 (2016)
  41. Alamir, N., Ismeil, M.A., Orabi, M.: New MPPT technique using phase-shift modulation for LLC resonant micro-inverter. In: 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, pp. 1465-1470 (2017)

피인용 문헌

  1. Fixed-frequency phase-shift modulated PV-MPPT for LLC resonant converters vol.20, pp.1, 2020, https://doi.org/10.1007/s43236-019-00001-w
  2. A Phase-Shift-Modulated LLC-Resonant Micro-Inverter Based on Fixed Frequency Predictive-MPPT vol.13, pp.6, 2020, https://doi.org/10.3390/en13061460
  3. A Fast and Accurate Maximum Power Point Tracking Approach Based on Neural Network Assisted Fractional Open-Circuit Voltage vol.9, pp.12, 2020, https://doi.org/10.3390/electronics9122206
  4. C-LLC-LL resonant converter with wide-gain-range and low-stress for hold-up operation vol.21, pp.9, 2020, https://doi.org/10.1007/s43236-021-00280-2