Acknowledgement
This work has been supported by national key Scientific Research Instruments and Equipment Development Projects of China (41827808).
References
- Kar, D.P., Biswal, S.S., Sahoo, P.K., Nayak, P.P., Bhuyan, S.: Selection of maximum power transfer region for resonant inductively coupled wireless charging system. AEU Int. J. Electron. Commun. 84, 84-92 (2018) https://doi.org/10.1016/j.aeue.2017.11.023
- Bowermaster, D., Alexander, M., Duvall, M.: The need for charging evaluating utility infrastructures for electric vehicles while providing customer support. IEEE Electrif. Mag. 5(1), 59-67 (2017) https://doi.org/10.1109/MELE.2016.2644559
- Yang, G., Liang, H.: Adaptive frequency measurement in magnetic resonance coupling based WPT system. Measurement 130, 318-326 (2018) https://doi.org/10.1016/j.measurement.2018.08.025
- Truong, B.D.: Investigation on power optimization principles for series-configured resonant coupled wireless power transfer systems. AEU Int. J. Electron. Commun. 106, 67-81 (2019) https://doi.org/10.1016/j.aeue.2019.04.023
- Das Barman, S., Reza, A.W., Kumar, N., Karim, M.E., Munir, A.B.: Wireless powering by magnetic resonant coupling: recent trends in wireless power transfer system and its applications. Renew. Sustain. Energy Rev. 51, 1525-1552 (2015) https://doi.org/10.1016/j.rser.2015.07.031
- Cheng, H., Zhang, H.: Investigation of improved methods in power transfer efficiency for radiating near-field wireless power transfer. J. Electr. Comput. Eng. (2016). https://doi.org/10.1155/2016/2136923
- Shi, Y., Zhang, Y., Shen, H., Fan, Y., Wang, C., Wang, M.: Design of a novel receiving structure for wireless power transfer with the enhancement of magnetic coupling. AEU Int. J. Electron. Commun. 95, 236-241 (2018) https://doi.org/10.1016/j.aeue.2018.08.033
- Zhi, Y., Jin, C., Li, W., Chen, J., Wang, B., Gong, R.: Indefinite-permeability material lens with finite size for miniaturized wireless power transfer system. AEU Int. J. Electron. Commun. 70, 1282-1287 (2016) https://doi.org/10.1016/j.aeue.2016.06.011
- Mi, C., Buja, G., Choi, S.Y., Rim, C.T.: Modern advances in wireless power transfer systems for roadway powered electric vehicles. IEEE Trans. Ind. Electron. 63, 6533-6545 (2016) https://doi.org/10.1109/TIE.2016.2574993
- Yu, H., Zhang, G., Liu, G., Liu, Q., Jing, L.: Wireless power transfer using a superconducting capacitor. Phys. CSuperconduct. 562, 85-89 (2019) https://doi.org/10.1016/j.physc.2018.10.013
- Li, Y., Liu, L., Zhang, C., Yang, Q., Li, J., Zhang, X.: Improved particle swarm optimization algorithm for adaptive frequency-tracking control in wireless power transfer systems. J. Power Electron. 18(5), 1470-1478 (2018) https://doi.org/10.6113/JPE.2018.18.5.1470
- Karalis, A., Joannopoulos, J., Soljacic, M.: Efficient wireless non-radiative midrange energy transfer. Ann. Phys. 323(1), 34-48 (2008) https://doi.org/10.1016/j.aop.2007.04.017
- Pan, G., Tang, C.: Outage performance on threshold af and df relaying schemes in simultaneous wireless information and power transfer systems. AEU Int. J. Electron. Commun. 71, 175-180 (2017) https://doi.org/10.1016/j.aeue.2016.10.021
- Xu, D., Li, Q.: Optimization of wireless information and power transfer in multiuser ofdm systems. AEU Int. J. Electron. Commun. 90, 171-174 (2018) https://doi.org/10.1016/j.aeue.2018.04.021
- Xu, D., Li, Q.: Resource allocation in ofdm-based wireless powered communication networks with swipt. AEU Int. J. Electron. Commun. 101, 69-75 (2019) https://doi.org/10.1016/j.aeue.2019.01.025
- Yang, M., Wang, P., Guan, Y., Yang, Z.: Models and experiments for the main topologies of MR-WPT Systems. J. Power Electron. 17(6), 1694-1706 (2017) https://doi.org/10.6113/JPE.2017.17.6.1694
- Zhang, K., Zhu, Z., Du, L., Song, B.: Eddy loss analysis and parameter optimization of the WPT system in seawater. J. Power Electron. 18(3), 778-788 (2018) https://doi.org/10.6113/JPE.2018.18.3.778
- Riehl, P.S., Satyamoorthy, A., Akram, H., Yen, Y.C., Yang, J.C., Juan, B., Lee, C.M., Lin, F.C., Muratov, V., Plumb, W., Tustin, P.: Wireless power systems for mobile devices supporting inductive and resonant operating modes. IEEE Trans. Microw. Theory Tech. 63, 780-790 (2015) https://doi.org/10.1109/TMTT.2015.2398413
- Valtchev, S., Borges, B., Brandisky, K., Klaassens, J.B.: Resonant contactless energy transfer with improved efficiency. IEEE Trans. Power Electron. 24, 685-699 (2009) https://doi.org/10.1109/TPEL.2008.2003188
- Kurs, A., Karilis, A., Mofat, R., Joannopoulos, J.D., Fisher, P., Soljacic, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83-86 (2007) https://doi.org/10.1126/science.1143254
- Li, S., Mi, C.C.: Wireless power transfer for electric vehicle applications. IEEE J. Emerg. Select. Topics Power Electron. 3(1), 4-17 (2015) https://doi.org/10.1109/JESTPE.2014.2319453
- Zhang, W., Wong, S.C., Tse, C.K., Chen, Q.: Analysis and comparison of secondary series- and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio. IEEE Trans. Power Electron. 29(6), 2979-2990 (2014) https://doi.org/10.1109/TPEL.2013.2273364
- Hu, A. P., Boys, J. T., Covic, G. A.: ZVS frequency analysis of a current-fed resonant converter. In: Proc. IEEE International Power Electronics Congress, pp. 217-221 (2000)
- Inagaki, N.: Theory of image impedance matching for inductively coupled power transfer systems. IEEE Trans. Microw. Theory Tech. 62(4), 901-908 (2014) https://doi.org/10.1109/TMTT.2014.2300033
- Terman, F.E.: Radio Engineers' Handbook. McGraw-Hill Book Company, New York (1943)
- Zhang, Y., Zhao, Z.: Frequency splitting analysis of two-coil resonant wireless power transfer. IEEE Antennas Wirel. Propag. Lett. 13, 400-402 (2014) https://doi.org/10.1109/LAWP.2014.2307924
- Zhang, Y., Zhao, Z., Chen, K.: Frequency-splitting analysis of four-coil resonant wireless power transfer. IEEE Trans. Ind. Appl. 50(4), 2436-2445 (2014) https://doi.org/10.1109/tia.2013.2295007
- Nguyen, H., Agbinya, J.I.: Splitting frequency diversity in wireless power transmission. IEEE Trans. Power Electron. 30(11), 6088-6096 (2015) https://doi.org/10.1109/TPEL.2015.2424312
- Niu, W.Q., Chu, J.X., Gu, W., Shen, A.D.: Exact analysis of frequency splitting phenomena of contactless power transfer systems. IEEE Trans. Circ. Syst. I-Regul. Papers 60(6), 1670-1677 (2013) https://doi.org/10.1109/TCSI.2012.2221172
- Zhang, Y., Zhao, Z., Chen, K.: Frequency decrease analysis of resonant wireless power transfer. IEEE Trans. Power Electron. 29(3), 1058-1063 (2013) https://doi.org/10.1109/TPEL.2013.2277783
- Kong, C.S.: A general maximum power transfer theorem. IEEE Trans. Educ. 38(3), 296-298 (1995) https://doi.org/10.1109/13.406510
- Li, Y., Yang, Q., Yan, Z., Zhang, C., Chen, H., Zhang, X.: Analysis and validation on characteristic of orientation in wireless power transfer system viacoupled magnetic resonances. Trans. China Electrotech. Soc. 29(2), 197-203 (2014)
- Tanzania, R., Choo, F.H., Siek, L.: Design of WPT coils to minimize AC resistance and capacitor stress applied to SS-topology. In: Proc. IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, pp. 118-122 (2015)
Cited by
- Optimal resonant frequency analysis for underground wireless power transfer with metal tube interference vol.11, pp.10, 2020, https://doi.org/10.1063/5.0057833