DOI QR코드

DOI QR Code

Three-phase flying-capacitor MMC with six coupled inductors

  • Le, Duc Dung (Department of Electrical Engineering, Yeungnam University) ;
  • Lee, Dong-Choon (Department of Electrical Engineering, Yeungnam University) ;
  • Kim, Heung-Geun (Department of Electrical Engineering, Kyungpook National University)
  • Received : 2020.02.11
  • Accepted : 2020.05.04
  • Published : 2020.07.20

Abstract

In this paper, the design and integration of coupled inductors have been proposed for a flying-capacitor (FC) modular multilevel converter (MMC) for induction motor drive applications. In the conventional three-phase FC-MMC, twelve discrete inductors are needed for three legs. However, by integrating one coupled inductor with two windings in two half-arms, the number of inductors required is reduced from 12 to 6. Accordingly, the overall volumes and weights of cores and windings can be reduced by 41.7% and 41.4% when compared with discrete inductors. To confirm the validity of the proposed coupled inductor, a 4160-V/1-MW simulation model of a FC-MMC and a 220-V/3-kW scaled-down prototype have been built, of which performance for induction motor drives has been tested from standstill to the rated speed.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20194030202310).

References

  1. Anupom, D., Shin, D.-C., Lee, D.-M.: Scheme for reducing harmonics in output voltage of modular multilevel converters with offset voltage injection. J. Power Electron. 19(6), 1496-1504 (2019) https://doi.org/10.6113/jpe.2019.19.6.1496
  2. Debnath, S., Qin, J., Bahrani, B., Saeedifard, M., Barbosa, P.: Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron. 30(1), 37-53 (2015) https://doi.org/10.1109/TPEL.2014.2309937
  3. Hagiwara, M., Akagi, H.: Control and experiment of pulsewidth-modulated modular multilevel converters. IEEE Trans. Power Electron. 24(7), 1737-1746 (2009) https://doi.org/10.1109/tpel.2009.2014236
  4. Jo, Y.J., Nguyen, T.H., Lee, D.-C.: Capacitance estimation of the submodule capacitors in modular multilevel converters for HVDC applications. J. Power Electron. 16(5), 1752-1762 (2016) https://doi.org/10.6113/JPE.2016.16.5.1752
  5. Lee, J.-M., Park, J.-W., Kang, D.-W., Lee, J.-P., Yoo, D.-W., Lee, J.-M.: Comparison of capacitor voltage balancing methods for 1GW MMC-HVDC based on real-time digital simulator and physical control systems. J. Power Electron. 19(5), 1171-1181 (2019) https://doi.org/10.6113/jpe.2019.19.5.1171
  6. Zhang, J., Cui, D., Tian, X., Zhao, C.: Hybrid double direction blocking sub-module for MMC-HVDC design and control. J. Power Electron. 19(6), 1486-1495 (2019) https://doi.org/10.6113/jpe.2019.19.6.1486
  7. Kim, C.-K., Belayneh, N.B., Park, C.-H., Kim, J.-M.: Maximum modulation index of VSC HVDC based on MMC considering compensation signals and AC network conditions. Trans. Korean Inst. Power Electron. 25(1), 61-67 (2020) https://doi.org/10.6113/TKPE.2020.25.1.61
  8. Jo, K.-R., Seo, B.-J., Park, K.-S., Kim, H.-S., Heo, J.-Y., Nho, E.-C.: Performance test circuit and control method for submodule of MMC-HVDC system. Trans. Korean Inst. Power Electron. 24(6), 452-458 (2019) https://doi.org/10.6113/TKPE.2019.24.6.452
  9. Nguyen, T.H., Al Hosani, K., El Moursi, M.S., Blaabjerg, F.: An overview of modular multilevel converters in HVDC transmission systems with STATCOM operation during pole-to-pole DC short circuits. Trans. Power Electron. 34(5), 4137-4160 (2019) https://doi.org/10.1109/TPEL.2018.2862247
  10. Francos, P.L., Verdugo, S.S., Alvarez, H.F., Guyomarch, S., Loncle, J.: INELFE Europe's first integrated onshore HVDC interconnection. In: IEEE Power and Energy Society General Meeting, pp. 1-8 (2012)
  11. Teeuwsen, S.P.: Modeling the trans bay cable project as voltage-sourced converter with modular multilevel converter design. In: IEEE Power and Energy Society General Meeting, pp. 1-8 (2011)
  12. Ota, J.I.Y., Shibano, Y., Niimura, N., Akagi, H.: A phase-shifted-PWM D-STATCOM using a modular multilevel cascade converter (SSBC)-Part I: modeling, analysis, and design of current control. IEEE Trans. Ind. Appl. 51(1), 279-288 (2015) https://doi.org/10.1109/TIA.2014.2326079
  13. Ota, J.I.Y., Shibano, Y., Akagi, H.: A phase-shifted PWM D-STATCOM using a modular multilevel cascade converter (SSBC)-Part II: zero-voltage-ride-through capability. IEEE Trans. Ind. Appl. 51(1), 289-296 (2015) https://doi.org/10.1109/TIA.2014.2326078
  14. Dekka, A., Wu, B., Fuentes, R.L., Perez, M., Zargari, N.R.: "Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE J. Emerg. Sel. Top. Power Electron. 5(4), 1631-1656 (2017) https://doi.org/10.1109/JESTPE.2017.2742938
  15. Le, D.D., Lee, D.-C.: A modified hybrid modular multilevel converter with reduced capacitor voltage fluctuations and fault-tolerant operation ability. In: Proceedings of IEEE ECCE Asia, pp. 172-177 (2019)
  16. Hagiwara, M., Hasegawa, I., Akagi, H.: Start-up and low-speed operation of an electric motor driven by a modular multilevel cascade inverter. IEEE Trans. Ind. Appl. 49(4), 1556-1565 (2013) https://doi.org/10.1109/TIA.2013.2256331
  17. Korn A.J.: Low output frequency operation of the modular multilevel converter. In: Proceedings of IEEE ECCE, pp. 3993-3997 (2010)
  18. SIEMENS: Drives for every demand. https://cache.industry.siemens.com/dl/files/230/109746230/att_990809/v1/poster-SINAMICS-mv-drives_en.pdf (2019). Accessed 2 Nov 2019
  19. BENSHAW: M2L Series M2L Medium Voltage Drive. https://www.benshaw.com/sites/default/files/downloads/brochures/benshaw-m2l-3000-brochure.pdf (2019). Accessed 5 Nov 2019
  20. Du, S., Wu, B., Zargari, N.R., Cheng, Z.: A flying-capacitor modular multilevel converter for medium-voltage motor drive. IEEE Trans. Power Electron. 32(3), 2081-2089 (2017) https://doi.org/10.1109/TPEL.2016.2565510
  21. Pan, D., Ruan, X., Bao, C., Li, W., Wang, X.: Magnetic integration of the LCL filter in grid-connected inverters. IEEE Trans. Power Electron. 29(4), 1573-1578 (2014) https://doi.org/10.1109/TPEL.2013.2281763
  22. Fang, J., Li, H., Tang, Y.: A magnetic integrated LLCL filter for grid-connected voltage-source converters. IEEE Trans. Power Electron. 32(3), 1725-1730 (2017) https://doi.org/10.1109/TPEL.2016.2613578
  23. Zumel, P., Garcia, O., Cobos, J.A., Uceda, J.: Magnetic integration for interleaved converters. In: Proceedings of IEEE APEC, pp. 1143-1149 (2003)
  24. Kawamura, W., Hagiwara, M., Akagi, H., Tsukakoshi, M., Nakamura, R., Kodama, S.: AC-inductors design for a modular multilevel TSBC converter, and performance of a low-speed high-torque motor drive using the converter. IEEE Trans. Ind. Appl. 53(5), 4718-4729 (2017) https://doi.org/10.1109/TIA.2017.2713338
  25. Kammerer, F., Kolb, J., Braun, M.: Optimization of the passive components of the modular multilevel matrix converter for drive applications. In: PCIM Europe conference proceedings, pp. 702-709 (2012)
  26. Shi, X., Wang, Z., Tolbert, L.M., Wang, F.: Modular multilevel converters with integrated arm inductors for high quality current waveforms. In: Proceedings of IEEE ECCE Asia, pp. 636-642 (2013)
  27. Kucka, J., Karwatzki, D., Baruschka, L., Mertens, A.: Modular multilevel converter with magnetically coupled inductors. IEEE Trans. Power Electron. 32(9), 6767-6777 (2017) https://doi.org/10.1109/TPEL.2016.2627882
  28. Le, D.D., Lee, D.-C.: Integration of coupled inductors for compact design of flying-capacitor modular multilevel converters. In: Proceedings of IEEE ECCE, pp. 5922-5927 (2019)
  29. McLyman, C.: Transformer and Inductor Design Handbook, vol. 10. CRC Press, Boca Raton (2011)
  30. Hitachi Metals: Selection and Use Directions for Magnet Wire. https://www.hitachimetals.co.jp/e/products/auto/el/pdf/MagnetWire_en.pdf (2019). Accessed 17 June 2019