DOI QR코드

DOI QR Code

Megahertz ZVS transformerless interleaved inverter for dielectric barrier discharge lamps

  • Liu, Zhen (Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University)
  • Received : 2020.01.11
  • Accepted : 2020.04.04
  • Published : 2020.07.20

Abstract

A transformerless zero-voltage switching (ZVS) megahertz interleaved inverter is proposed in this paper to improve the driving efficiency of dielectric barrier discharge (DBD) lamps. The proposed inverter consists of two inductors and two metal oxide semiconductor field effect transistors (MOSFETs). The MOSFETs operate in the interleaving mode and the energy injected into the DBD device is controlled by adjusting the turn-on time or frequency of the switching devices. Various waveforms can be realized by controlling the phase difference of the pulses. The operational principles were analyzed and the circuit was simulated. A prototype was built and demonstrated. Experiment results show that the proposed inverter can achieve ZVS and generate high-voltage bipolar pulses with a frequency range from several kilohertz to 1 MHz. A short pulse with a steep rise time of 40 ns, a peak-to-peak voltage of 1400 V and full width at half the maximum of 220 ns at a frequency of 1 MHz can be achieved. The lamp efficiency was increased by more than 7% when compared with the lamp driven at kilohertz. Therefore, it is suggested that the proposed inverter is suitable for driving the dielectric barrier discharge lamps efficiently with a simple structure.

Keywords

References

  1. Khodja, K., Belasri, A., Loukil, H.: Modeling of a Ne/Xe dielectric barrier discharge excilamp for improvement of VUV radiation production. Plasma Phys. Rep. 43(8), 891-898 (2017) https://doi.org/10.1134/S1063780X17080074
  2. Beleznai, S., Mihajlik, G., Agod, A., Maros, I., Juhasz, R., Nemeth, Z., Jakab, L., Richter, P.: High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations. J. Phys. D Appl. Phys. 39(17), 3777 (2006) https://doi.org/10.1088/0022-3727/39/17/012
  3. Prakash, R., Hossain, A.M., Pal, U., Kumar, N., Khairnar, K., Mohan, M.K.: Dielectric barrier discharge based mercury-free plasma UV-lamp for efficient water disinfection. Sci. Rep. 7(1), 1-8 (2017) https://doi.org/10.1038/s41598-016-0028-x
  4. Govindan, S.S., Santiago, A.E.X.: Optimized dielectric barrier discharge-plasma actuator for active flow control in wind turbine. Struct. Control Health Monit. 26(12), 1-17 (2019)
  5. Palau, J., Assadi, A.A., Penya-Roja, J., Bouzaza, A., Wolbert, D., Martinez-Soria, V.: Isovaleraldehyde degradation using UV photocatalytic and dielectric barrier discharge reactors, and their combinations. J. Photochem. Photobiol. A 299, 110-117 (2015) https://doi.org/10.1016/j.jphotochem.2014.11.013
  6. Jakraktok, I., Dechthummarong, C.: Effect of high voltage switching frequency on DBD plasma in air for PET surface modification. In: 2018 International Electrical Engineering Congress (iEECON), pp. 1-4 (2018)
  7. Mildren, R.P., Carman, R.J., Falconer, I.S.: Visible and VUV emission from a xenon dielectric barrier discharge using pulsed and sinusoidal voltage excitation waveforms. IEEE Trans. Plasma Sci. 30(1), 192-193 (2002) https://doi.org/10.1109/TPS.2002.1003989
  8. Beleznai, S., Mihajlik, G., Maros, I., Balazs, L., Richter, P.: Improving the efficiency of a fluorescent Xe dielectric barrier light source using short pulse excitation. J. Phys. D Appl. Phys. 41(11), 115202 (2008) https://doi.org/10.1088/0022-3727/41/11/115202
  9. Salam, Z., Facta, M., Amjad, M., Buntat, Z.: Design and implementation of a low cost, high yield dielectric barrier discharge ozone generator based on the single switch resonant converter. IET Power Electron. 6(8), 1583-1591 (2013) https://doi.org/10.1049/iet-pel.2012.0470
  10. Wang, Y., Tong, L., Han, Q., Liu, K.: Repetitive high-voltage all-solid-state Marx generator for excimer DBD UV sources. IEEE Trans. Plasma Sci. 44(10), 1933-1940 (2016) https://doi.org/10.1109/TPS.2016.2558519
  11. Kyrberg, K., Guldner, H., Rupp, A., Schallmoser, O.: Half-bridge and full-bridge choke converter concepts for the pulsed operation of large dielectric barrier discharge lamps. IEEE Trans. Power Electron. 22(3), 926-933 (2007) https://doi.org/10.1109/TPEL.2007.897003
  12. Amjad, M., Salam, Z.: Design and implementation of a high-frequency LC-based half-bridge resonant converter for dielectric barrier discharge ozone generator. IET Power Electron. 7(9), 2403-2411 (2014) https://doi.org/10.1049/iet-pel.2013.0511
  13. Lopez-Fernandez, J.A., Pena-Eguiluz, R., Lopez-Callejas, R., Mercado-Cabrera, A., Jaramillo-Sierra, B., Rodriguez-Mendez, B., Valencia-Alvarado, R., Munoz-Castro, A.E.: A 10-to 30-kHz adjustable frequency resonant full-bridge multicell power converter. IEEE Trans. Ind. Electron. 62(4), 2215-2223 (2015) https://doi.org/10.1109/TIE.2014.2352601
  14. Tang, X., Lu, Y., Zhang, M., Zhu, Y.: Analysis and experimentation of a new half-bridge high-frequency resonant inverter for DBD type ozonizer. Ozone Sci. Eng. 41(4), 332-338 (2019) https://doi.org/10.1080/01919512.2018.1535888
  15. Davari, P., Zare, F., Ghosh, A.: Analysing DBD plasma lamp intensity versus power consumption using a push-pull pulsed power supply. In: 2013 15th European Conference on Power Electronics and Applications (EPE), pp. 1-8 (2013)
  16. Park, J.H., Baek, J.B., Cho, B.H.: Current-sourced push-pull inverter for mercury-free flat fluorescent lamp driving. In: SID Symposium Digest of Technical Papers, pp. 1560-1563 (2008)
  17. Bonnin, X., Brandelero, J., Videau, N., Piquet, H., Meynard, T.: A high voltage high frequency resonant inverter for supplying DBD devices with short discharge current pulses. IEEE Trans. Power Electron. 29(8), 4261-4269 (2014) https://doi.org/10.1109/TPEL.2013.2295525
  18. Hao, S., Liu, X., Li, W., Deng, Y., He, X.: Energy compression of dielectric barrier discharge with third harmonic circulating current in current-fed parallel-series resonant converter. IEEE Trans. Power Electron. 31(12), 8528-8540 (2016) https://doi.org/10.1109/TPEL.2016.2520953
  19. Chang, L., Guo, T., Liu, J., Zhang, C., Deng, Y., He, X.: Analysis and design of a current-source CLCC resonant converter for DBD applications. IEEE Trans. Power Electron. 29(4), 1610-1621 (2014) https://doi.org/10.1109/TPEL.2013.2266376
  20. Liu, Z., Wang, W.-J., Wei, H.-C., Liu, C.-L.: A novel ZVS double switch flyback inverter and pulse controlled dimming methods for flat DBD lamp. IEEE Trans. Consum. Electron. 57(3), 995-1002 (2011) https://doi.org/10.1109/TCE.2011.6018847
  21. Amjad, M., Salam, Z., Facta, M., Mekhilef, S.: Analysis and implementation of transformerless LCL resonant power supply for ozone generation. IEEE Trans. Power Electron. 28(2), 650-660 (2013) https://doi.org/10.1109/TPEL.2012.2202130
  22. Diop, M.A., Belinger, A., Piquet, H.: DBD tranformerless power supplies: impact of the parasitic capacitances on the power transfer. In: Journal of Physics: Conference Series, pp. 012004.1-012004.10 (2017)
  23. Rueda, V., Wiesner, A., Diez, R., Piquet, H.: Power estimation of a current supplied DBD considering the transformer parasitic elements. IEEE Trans. Ind. Appl. 55(6), 6567-6575 (2019) https://doi.org/10.1109/tia.2019.2933519
  24. Seo, I.W., Jung, J.-C., Oh, B.J., Whang, K.-W.: Improvement of luminance and luminous efficacy of mercury-free, flat fluorescent lamp by optimizing phosphor profile. IEEE Trans. Plasma Sci. 38(5), 1097-1100 (2010) https://doi.org/10.1109/TPS.2010.2043961
  25. Liu, Z., Hu, W.-B., Liu, C.-L.: Luminance and luminous efficacy improvement of mercury-free flat fluorescent lamp with arclike electrode. IEEE Trans. Plasma Sci. 38(10), 2860-2866 (2010) https://doi.org/10.1109/TPS.2010.2064339
  26. Florez, D., Schitz, D., Piquet, H., Diez, R.: Efficiency of an exciplex DBD lamp excited under different methods. IEEE Trans. Plasma Sci. 46(1), 140-147 (2017) https://doi.org/10.1109/tps.2017.2777835
  27. Bolton, J., Santelli, M.: Method for the measurement of the output of monochromatic (254 Nm) low-pressure UV lamps. IUVA News. 19, 9-16 (2017)