DOI QR코드

DOI QR Code

Sensorless vector control of SCIG-based small wind turbine systems using cascaded second-order generalized integrators

  • Nguyen, Anh Tan (Department of Electrical Engineering, Yeungnam University) ;
  • Lee, Dong-Choon (Department of Electrical Engineering, Yeungnam University)
  • 투고 : 2019.12.16
  • 심사 : 2020.02.17
  • 발행 : 2020.05.20

초록

In this paper, a novel sensorless control scheme for SCIG-based wind turbine systems, which utilizes cascaded second-order generalized integrators (SOGIs), is proposed. The DC offset and harmonics in the estimated rotor flux can be significantly reduced since the cascaded SOGI behaves like an adaptive filter. The stator frequency, which is regarded as the tuning frequency of the SOGI, is estimated from the amplitude differences among the cascaded SOGI outputs by a PI controller. Simulation and experimental results have verified the validity of the proposed sensorless scheme under wind speed variations.

키워드

과제정보

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (no. 20173030024770).

참고문헌

  1. Li, P., Xiong, L., Wang, J., Ma, M., Khan, M.W.: SSCI mitigation of series-compensated DFIG wind power plants with robust sliding mode controller using feedback linearization. J. Power Electron. 19(2), 569-579 (2019) https://doi.org/10.6113/JPE.2019.19.2.569
  2. Zheng, X.-X., Peng, P.: Fault diagnosis of wind power converters based on compressed sensing theory and weight constrained adaboost-SVM. J. Power Electron. 19(2), 443-453 (2019) https://doi.org/10.6113/JPE.2019.19.2.443
  3. Peng, Y., Li, Y., Liu, F., Xu, Z., Cao, Y.: Frequency stabilization method for grid integration of large-scale centralized wind farms via VSC-HVDC technology. J. Power Electron. 18(2), 547-557 (2018) https://doi.org/10.6113/JPE.2018.18.2.547
  4. Yaramasu, V., Wu, B., Sen, P., Kouro, S., Narimani, M.: High-power wind energy conversion systems: state of-the-art and emerging technologies. Proc. IEEE 103(5), 740-788 (2015) https://doi.org/10.1109/JPROC.2014.2378692
  5. Lee, D.-C., Abo-khalil, A.G.: Optimal efficiency control of induction generators in wind energy conversion systems using support vector regression. J. Power Electron. 8(4), 345-353 (2008)
  6. Caruana, C., Asher, G.M., Sumner, M.: Performance of HF signal injection techniques for zero-low-frequency vector control of induction machines under sensorless conditions. IEEE Trans. Ind. Electron. 53(1), 225-238 (2006) https://doi.org/10.1109/TIE.2005.862257
  7. Holtz, J., Quan, J.: Drift- and parameter-compensated flux estimator for persistent zero-stator-frequency operation of sensorless-controlled induction motors. IEEE Trans. Ind. Appl. 39(4), 1052-1060 (2003) https://doi.org/10.1109/TIA.2003.813726
  8. Hinkkanen, M., Harnefors, L., Luomi, J.: Reduced-order flux observers with stator-resistance adaptation for speed-sensorless induction motor drives. IEEE Trans. Power Electron. 25(5), 1173-1183 (2010) https://doi.org/10.1109/TPEL.2009.2039650
  9. Zaky, M.S., Metwaly, M.K.: Sensorless torque/speed control of induction motor drives at zero and low frequencies with stator and rotor resistance estimations. IEEE J. Emerg. Sel. Top. Power Electron. 4(4), 1416-1429 (2016) https://doi.org/10.1109/JESTPE.2016.2597003
  10. Das, S., Kumar, R., Pal, A.: MRAS-based speed estimation of induction motor drive utilizing machines d- and q-circuit impedances. IEEE Trans. Ind. Electron. 66(6), 4286-4295 (2019) https://doi.org/10.1109/tie.2018.2860530
  11. Tan, N.A., Lee, D.-C.: Loss minimization control of sensorless scalar- controlled induction motor drives considering iron loss. In: Proceedings of IEEE 2018 International Power Electronics Conference (IPEC-ECCE Asia), pp. 478-482 (2018)
  12. Alonge, F., Cangemi, T., D'Ippolito, F., Fagiolini, A., Sferlazza, A.: Convergence analysis of extended Kalman filter for sensorless control of induction motor. IEEE Trans. Ind. Electron. 62(4), 2341-2352 (2015) https://doi.org/10.1109/TIE.2014.2355133
  13. Zhang, X.: Sensorless induction motor drive using indirect vector controller and sliding-mode observer for electric vehicles. IEEE Trans. Veh. Technol. 62(7), 3010-3018 (2013) https://doi.org/10.1109/TVT.2013.2251921
  14. Hu, J., Wu, B.: New integration algorithms for estimating motor flux over a wide speed range. IEEE Trans. Power Electron. 13(5), 969-977 (1998) https://doi.org/10.1109/63.712323
  15. Comanescu, M., Xu, L.: An improved flux observer based on PLL frequency estimator for sensorless vector control of induction motors. IEEE Trans. Ind. Electron. 53(1), 50-56 (2006) https://doi.org/10.1109/TIE.2005.862317
  16. Bose, B.K., Patel, N.R.: A programmalbe cascaded low-pass filter-based flux synthesis for a stator flux-oriented vector-controlled induction motor drive. IEEE Trans. Ind. Electron. 44(1), 140-143 (1997) https://doi.org/10.1109/41.557511
  17. Shin, M.-H., Hyun, D.-S., Cho, S.-B., Choe, S.-Y.: An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors. IEEE Trans. Power Electron. 15(2), 312-318 (2000) https://doi.org/10.1109/63.838104
  18. Park, J.-S., Nguyen, T.H., Lee, D.-C.: Advanced SOGI-FLL scheme based on fuzzy logic for single-phase grid-connected converters. J. Power Electron. 14(3), 598-607 (2014) https://doi.org/10.6113/JPE.2014.14.3.598
  19. Nguyen, A.T. , Lee, D.-C.: Sensorless control scheme of DFIG wind energy conversion systems based on SOGIs and FLL. In: Proceedings of the IEEE 10th International Symposium on Power Electronics for Distributed Generation System (PEDG), pp. 465-471 (2019)
  20. Matas, J., Castilla, M., Miret, J., De Vicuna, L.G., Guzman, R.: An adaptive prefiltering method to improve the speed/accuracy tradeoff of voltage sequence detection methods under adverse grid conditions. IEEE Trans. Ind. Electron. 61(5), 2139-2151 (2014) https://doi.org/10.1109/TIE.2013.2274414
  21. Rodriguez, P., Luna, A., Munoz-Aguilar, R.S., Etxeberria-Otadui, I., Teodorescu, R., Blaabjerg, F.: A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions. IEEE Trans. Power Electron. 27(1), 99-112 (2012) https://doi.org/10.1109/TPEL.2011.2159242
  22. Xin, Z., Zhao, E., Blaabjerg, F., Zhang, L., Loh, P.C.: An improved flux observer for field-oriented control of induction motors based on dual second-order generalized integrator frequency-locked loop. IEEE J. Emerg. Sel. Top. Power Electron. 5(1), 513-525 (2017) https://doi.org/10.1109/JESTPE.2016.2623668
  23. Zhao, R., Xin, Z., Loh, P.C., Blaabjerg, F.: A novel flux estimator based on multiple second-order generalized integrators and frequency-locked loop for induction motor drives. IEEE Trans. Power Electron. 32(8), 6286-6296 (2017) https://doi.org/10.1109/TPEL.2016.2620428
  24. Xu, W., Jiang, Y., Mu, C., Blaabjerg, F.: Improved nonlinear flux observer-based second-order SOIFO for PMSM sensorless control. IEEE Trans. Power Electron. 34(1), 565-579 (2019) https://doi.org/10.1109/TPEL.2018.2822769
  25. Kutija, M., Sumina, D., Colovic, I.: PLL-based rotorflux estimation method for sensorless vector controlled squirrel-cage induction generators. Automatika 57(3), 578-588 (2016) https://doi.org/10.7305/automatika.2016.11.1940
  26. Senjyu, T., et al.: Sensor-less maximum power point tracking control for wind generation system with squirrel cage induction generator. Renew. Energy 34(4), 994-999 (2009) https://doi.org/10.1016/j.renene.2008.08.007
  27. Sul, S.-K.: Control of electric machine drive systems, 5th edn. Willey, New York (2011)
  28. Thongam, J.S., Ouhrouche, M.: MPPT control methods in wind energy conversion systems. In: R. Carriveau (ed.) Fundamental and Advanced Topics in Wind Power. InTech, pp. 339-360 (online). http://www.intechopen.com (2011)

피인용 문헌

  1. Advanced LVRT strategy for SCIG-based wind energy conversion systems using feedback linearization and sliding mode control vol.21, pp.8, 2020, https://doi.org/10.1007/s43236-021-00256-2
  2. Experimental implementation of a novel scheduling algorithm for adaptive and modified P&O MPPT controller using fuzzy logic for WECS vol.35, pp.9, 2020, https://doi.org/10.1002/acs.3288