DOI QR코드

DOI QR Code

Soft switching high step-down series-capacitor based converter with coupled-inductor technique

  • Chen, Zhangyong (School of Automation Engineering, Institute of Electric Vehicle Driving System and Safety Technology, University of Electronic Science and Technology of China (UESTC)) ;
  • Chen, Yong (School of Automation Engineering, Institute of Electric Vehicle Driving System and Safety Technology, University of Electronic Science and Technology of China (UESTC)) ;
  • Zhang, Chenyu (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China (UESTC)) ;
  • Wu, Yunfeng (School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China (UESTC))
  • 투고 : 2019.12.18
  • 심사 : 2020.04.22
  • 발행 : 2020.07.20

초록

High voltage step-down converters are very popular in distributed power systems, voltage regular modules, automatic vehicles, etc. To avoid extreme duty cycles, a series capacitor-based buck converter with a coupled inductor is proposed in this paper. In this converter, the voltage stresses of the power switches are clamped to half of the input voltage. Thus, low voltage rating MOSFETs with a low Rds,on could be utilized to improve the performance of the proposed converter. Moreover, synchronous MOSFETs are also used to reduce the conduction losses of the switches. Zero voltage switching (ZVS) for the main power switches is achieved using the coupled-inductor technique. In addition, through adding a bypass flowing path, a negative current is established to guarantee the ZVS condition of the power switches. The operating principle of the proposed converter is described in this paper, and the DC voltage gain ratio, automatic current sharing, soft switching condition and design guideline of the critical parameters are also given. Finally, experimental results obtained from a 60 V/200 W prototype are presented to verify the analysis of the proposed converter.

키워드

과제정보

This work was supported by the Scientific and Technical Supporting Programs of Sichuan Province under Grant (20ZDYF2822 and 20ZDYF2821).

참고문헌

  1. Liu, Y., Kumar, A., Pervaiz, S, et al: A high-power-density low-profile dc-dc converter for cellphone battery charging applications. In: IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL) p 1-6 (2017)
  2. Pouladi, F., Farzanehfard, H., Adib, E., et al.: Single-switch soft-switching LED driver suitable for battery-operated systems. IEEE Trans. Ind. Electron. 66(4), 2726-2734 (2019) https://doi.org/10.1109/tie.2018.2844825
  3. Nan, C., Ayyanar, R.: A high frequency zero-voltage-transition (ZVT) synchronous buck converter for automotive applications. In: IEEE Energy Conversion Congress and Exposition (ECCE), p 1-6 (2016)
  4. Lee, F.C., Barbosa, P., Xu, P., et al.: Topologies and design considerations for distributed power system applications. Proc. IEEE 89(6), 939-950 (2001) https://doi.org/10.1109/5.931492
  5. Erickson, R.W., Maksimovic, D.: Fundamentals of power electronics. Springer Science and Business Media, New York (2007)
  6. Axelrod, B., Berkovich, Y., Shenkman, A., et al.: Diode-capacitor voltage multipliers combined with boost-converters: topologies and characteristics. IET Power Electron. 5(6), 873-884 (2012) https://doi.org/10.1049/iet-pel.2011.0215
  7. Yau, Y.T., Jiang, W.Z., Hwu, K.I.: Step-down converter with wide voltage conversion ratio. IET Power Electron. 8(11), 2136-2144 (2015) https://doi.org/10.1049/iet-pel.2014.0919
  8. Hwu, K.I., Jiang, W.Z., Yau, Y.T.: Ultrahigh step-down converter. IEEE Trans. Power Electron. 30(6), 3262-3274 (2015) https://doi.org/10.1109/TPEL.2014.2338080
  9. Cervera, A., Peretz, M.M., Ben-Yaakov, S.: A generic and unified global-gyrator model of switched-resonator converters. IEEE Trans. Power Electron. 32(12), 8945-8952 (2017) https://doi.org/10.1109/TPEL.2017.2694858
  10. Hwu, K.I., Jiang, W.Z., Wu, P.Y.: An expandable two-phase interleaved ultrahigh step-down converter with automatic current balance. IEEE Trans. Power Electron. 32(12), 9223-9237 (2017) https://doi.org/10.1109/TPEL.2017.2656938
  11. Hwu, K.I., Jiang, W.Z., Yau, Y.T.: Nonisolated coupled-inductor-based high step-down converter with zero dc magnetizing inductance current and nonpulsating output current. IEEE Trans. Power Electron. 31(6), 4362-4377 (2016) https://doi.org/10.1109/TPEL.2015.2477468
  12. Wai, R.J., Liaw, J.J.: High-efficiency coupled-inductor-based step-down converter. IEEE Trans. Power Electron. 31(6), 4265-4279 (2016) https://doi.org/10.1109/TPEL.2015.2470105
  13. Zhao, Q., Lee, F.C.: High-efficiency, high step-up DC-DC converters. IEEE Trans. Power Electron. 18(1), 65-73 (2003) https://doi.org/10.1109/TPEL.2002.807188
  14. Wu, T.F., Lai, Y.S., Hung, J.C., et al.: Boost converter with coupled inductors and buck-boost type of active clamp. IEEE Trans. Ind. Electron. 55(1), 154-162 (2008) https://doi.org/10.1109/TIE.2007.903925
  15. Chen, Z., Zhou, Q., Xu, J.: Coupled-inductor boost integrated flyback converter with high-voltage gain and ripple-free input current. IET Power Electron. 8(2), 213-220 (2014) https://doi.org/10.1049/iet-pel.2014.0066
  16. Pan, C.T., Chuang, C.F., Chu, C.C.: A novel transformerless interleaved high step-down conversion ratio DC-DC converter with low switch voltage stress. IEEE Trans. Ind. Electron. 61(10), 5290-5299 (2014) https://doi.org/10.1109/TIE.2014.2301774
  17. Cheshmdehmam, D., Adib, E., Farzanehfard, H.: Soft-switched nonisolated high step-down converter. IEEE Trans. Ind. Electron. 66(1), 183-190 (2019) https://doi.org/10.1109/tie.2018.2829471
  18. Amiri, M., Farzanehfard, H.: A high-efficiency interleaved ultra-high step-down DC-DC converter with very low output current ripple. IEEE Trans. Ind. Electron. 66(7), 5177-5185 (2019) https://doi.org/10.1109/tie.2018.2869348
  19. Chen, G., Deng, Y., He, X., et al.: Zero-voltage-switching buck converter with low-voltage stress using coupled inductor. IET Power Electron. 9(4), 719-727 (2016) https://doi.org/10.1049/iet-pel.2015.0267
  20. Chen, G., Deng, Y., Chen, L., et al.: A family of zero-voltage-switching magnetic coupling nonisolated bidirectional DC-DC converters. IEEE Trans. Ind. Electron. 64(8), 6223-6233 (2017) https://doi.org/10.1109/TIE.2017.2682007
  21. Yousefzadeh, V., Alarcon, E., Maksimovic, D.: Three-level buck converter for envelope tracking applications. IEEE Trans. Power Electron. 21(2), 549-552 (2006) https://doi.org/10.1109/TPEL.2005.869728
  22. Choi, B., Maksimovic, D.: Loss modeling and optimization for monolithic implementation of the three-level buck converter. In: IEEE Energy Conversion Congress and Exposition, pp 5574-5579 (2013)
  23. Lee, W., Han, D., Morris, C.T., et al.: High-frequency GaN HEMTs based point-of-load synchronous buck converter with zero-voltage switching. J. Power Electron. 17(3), 601-609 (2017) https://doi.org/10.6113/JPE.2017.17.3.601
  24. Korada, N., Yu, Z., Ayyanar, R.: Loss characterization and analysis of high voltage E-mode GaN HEMT in soft-switching application. In: IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), pp 40-44 (2018)
  25. Wang, K., Yang, X., Wang, L., et al.: Instability analysis and oscillation suppression of enhancement-mode GaN devices in half-bridge circuits. IEEE Trans. Power Electron. 33(2), 1585-1596 (2018) https://doi.org/10.1109/TPEL.2017.2684094
  26. Lee, S.H., Choe, H.J., Kang, B.: Quasi-resonant passive snubber for improving power conversion efficiency of a DC-DC step-down converter. IEEE Trans. Power Electron. 33(3), 2026-2034 (2018) https://doi.org/10.1109/TPEL.2017.2698211
  27. Lee, J.H., Yu, D.H., Kim, J.G., et al.: Auxiliary switch control of a bidirectional soft-switching dc/dc converter. IEEE Trans. Power Electron. 28(12), 5446-5457 (2013) https://doi.org/10.1109/TPEL.2013.2254131
  28. Adib, E., Farzanehfard, H.: Family of zero-voltage transition pulse width modulation converters with low auxiliary switch voltage stress. IET Power Electron. 4(4), 447-453 (2011) https://doi.org/10.1049/iet-pel.2010.0204
  29. Zhang, X., Qian, W., Li, Z.: Design and analysis of a novel ZVZCT boost converter with coupling effect. IEEE Trans. Power Electron. 32(12), 8992-9000 (2017) https://doi.org/10.1109/TPEL.2017.2655584
  30. Lee, I.O., Cho, S.Y., Moon, G.W.: Interleaved buck converter having low switching losses and improved step-down conversion ratio. IEEE Trans. Power Electron. 27(8), 3664-3675 (2012) https://doi.org/10.1109/TPEL.2012.2185515
  31. Shenoy, P.S., Amaro, M., Morroni, J., et al.: Comparison of a buck converter and a series capacitor buck converter for high-frequency, high-conversion-ratio voltage regulators. IEEE Trans. Power Electron. 31(10), 7006-7015 (2016) https://doi.org/10.1109/TPEL.2015.2508018
  32. Zhang, Y., Sen, P.C.: A new soft-switching technique for buck, boost, and buck-boost converters. IEEE Trans. Ind. Appl. 39(6), 1775-1782 (2003) https://doi.org/10.1109/TIA.2003.818964
  33. Kim, K., Cha, H., Park, S., et al.: A modified series-capacitor high conversion ratio DC-DC converter eliminating start-up voltage stress problem. IEEE Trans. Power Electron. 33(1), 8-12 (2018) https://doi.org/10.1109/TPEL.2017.2705705

피인용 문헌

  1. A soft switching four‐phase converter with ultra‐high step down conversion ratio and automatic uniform current sharing vol.14, pp.8, 2020, https://doi.org/10.1049/pel2.12126