References
- Pasparakis M, Haase I, Nestle FO. 2014. Mechanisms regulating skin immunity and inflammation. Nat. Rev. Immunol. 14: 289-301. https://doi.org/10.1038/nri3646
- Kim JE, Lee KW. 2018. Molecular Targets of Phytochemicals for Skin Inflammation. Curr. Pharm. Des. 24: 1533-1550. https://doi.org/10.2174/1381612824666180426113247
- Poon F, Kang S, Chien AL. 2015. Mechanisms and treatments of photoaging. Photodermatol. Photoimmunol. Photomed. 31: 65-74. https://doi.org/10.1111/phpp.12145
- Kaur CD, Saraf S. 2010. In vitro sun protection factor determination of herbal oils used in cosmetics. Pharmacognosy Res. 2: 22-25. https://doi.org/10.4103/0974-8490.60586
- Liu M, Dhanwada KR, Birt DF, Hecht S, Pelling JC. 1994. Increase in p53 protein half-life in mouse keratinocytes following UV-B irradiation. Carcinogenesis 15: 1089-1092.
- Roh E, Kim JE, Kwon JY, Park JS, Bode AM, Dong Z, et al. 2017. Molecular mechanisms of green tea polyphenols with protective effects against skin photoaging. Crit. Rev. Food Sci. Nutr. 57: 1631-1637. https://doi.org/10.1080/10408398.2014.1003365
- Lee YR, Noh EM, Jeong EY, Yun SK, Jeong YJ, Kim JH, et al. 2009. Cordycepin inhibits UVB-induced matrix metalloproteinase expression by suppressing the NF-kappaB pathway in human dermal fibroblasts. Exp. Mol. Med. 41: 548-554. https://doi.org/10.3858/emm.2009.41.8.060
- Watson RE, Gibbs NK, Griffiths CE, Sherratt MJ. 2014. Damage to skin extracellular matrix induced by UV exposure. Antioxid. Redox Signal. 21: 1063-1077. https://doi.org/10.1089/ars.2013.5653
- Fisher GJ. 2005. The pathophysiology of photoaging of the skin. Cutis 75: 5-8.(discussion 8-9).
- Zhang LL, Tian K, Tang ZH, Chen XJ, Bian ZX, Wang YT, et al. 2016. Phytochemistry and Pharmacology of Carthamus tinctorius L. Am. J. Chin. Med. 44: 197-226. https://doi.org/10.1142/S0192415X16500130
- Asgarpanah J, Kazemivash N. 2013. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chin. J. Integr. Med. 19: 153-159. https://doi.org/10.1007/s11655-013-1354-5
- Hirose M, Masuda A, Ito N, Kamano K, Okuyama H. 1990. Effects of dietary perilla oil, soybean oil and safflower oil on 7, 12- dimethylbenz [a] anthracene (DMBA) and 1, 2-dimethylhydrazine (DMH)-induced mammary gland and colon carcinogenesis in female SD rats. Carcinogenesis 11: 731-735. https://doi.org/10.1093/carcin/11.5.731
- Bozan B, Temelli F. 2008. Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresour. Technol. 99: 6354-6359. https://doi.org/10.1016/j.biortech.2007.12.009
- Matthaus B, Ozcan MM, Al Juhaimi FY. 2015. Fatty acid composition and tocopherol profiles of safflower (Carthamus tinctorius L.) seed oils. Nat. Product Res. 29: 193-196. https://doi.org/10.1080/14786419.2014.971316
- Corleto A, Alba E, Polignano G, Vonghio G. 1997. Presented at the Proceedings of the IVth International Safflower Conference, Bari, Italy.
- Nagaraj G. 1993. Presented at the 3rd Int. Safflower Conf. Beijing.
- Kim J, Jeon S, Park Y, Choi M, Moon K. 1999. Effects of safflower seed (Carthamus tinctorious L.) powder on lipid metabolism in high fat and high cholesterol-fed rats. J. Korean Soc. Food Sci. Nutr. 28: 625-631.
- Chung S, Choi H, Chung M, Ahn M, Yoo T, Rheu H, et al. 1999. Effects of safflower seed on the fracture healing in rat tibia. Yakhak Hoeji. 43: 526-534.
- Kim H-J, Chung S-K, Choi S-W. 1999. Lipoxygenase inhibitors from Paeonia lactiflora seeds. J. Food Sci. Nutr. 4: 163-166.
- Roh JS, Han JY, Kim JH, Hwang JK. 2004. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol. Pharm. Bull. 27: 1976-1978. https://doi.org/10.1248/bpb.27.1976
- Cholbi MR, Paya M, Alcaraz MJ. 1991. Inhibitory effects of phenolic compounds on CCl4-induced microsomal lipid peroxidation. Experientia 47: 195-199. https://doi.org/10.1007/BF01945426
- Liao YH, Houghton PJ, Hoult JR. 1999. Novel and known constituents from Buddleja species and their activity against leukocyte eicosanoid generation. J. Nat. Products 62: 1241-1245. https://doi.org/10.1021/np990092+
- Hsu YL, Kuo PL, Liu CF, Lin CC. 2004. Acacetin-induced cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Cancer Lett. 212: 53-60. https://doi.org/10.1016/j.canlet.2004.02.019
- Kraft C, Jenett-Siems K, Siems K, Jakupovic J, Mavi S, Bienzle U, et al. 2003. In vitro antiplasmodial evaluation of medicinal plants from Zimbabwe. Phytother. Res. 17: 123-128. https://doi.org/10.1002/ptr.1066
- Rittie L, Fisher GJ. 2002. UV-light-induced signal cascades and skin aging. Ageing Res.Rev. 1: 705-720. https://doi.org/10.1016/S1568-1637(02)00024-7
- Ascenso A, Ribeiro H, Marques HC, Oliveira H, Santos C, Simoes S. 2014. Is tretinoin still a key agent for photoaging management? Mini Rev. Med. Chem. 14: 629-641. https://doi.org/10.2174/1389557514666140820102735
- Lim TG, Kim YA, Kim JE, Baek S, Lee SY, Lee CC, et al. 2018. PKCiota is a target of 7,8,4'-trihydroxyisoflavone for the suppression of UVB-induced MMP-1 expression. Exp. Dermatol. 27: 449-452. https://doi.org/10.1111/exd.13375
- Kim JE, Song D, Kim J, Choi J, Kim JR, Yoon HS, et al. 2016. Oral Supplementation with cocoa extract reduces UVB-Induced wrinkles in hairless mouse skin. J. Invest. Dermatol. 136: 1012-1021. https://doi.org/10.1016/j.jid.2015.11.032
- Park G, Baek S, Kim JE, Lim TG, Lee CC, Yang H, et al. 2015. Flt3 is a target of coumestrol in protecting against UVB-induced skin photoaging. Biochem. Pharmacol. 98: 473-483. https://doi.org/10.1016/j.bcp.2015.08.104
- Casanova F, Santos L. 2016. Encapsulation of cosmetic active ingredients for topical application--a review. J. Microencapsul. 33: 1-17. https://doi.org/10.3109/02652048.2015.1115900
- Al-Refaie A, Sy E, Rawabdeh I, Alaween W. 2016. Integration of SWOT and ANP for effective strategic planning in the cosmetic industry. Adv. Prod. Eng. Manag. 11: 49.
- Lee JY, Chang EJ, Kim HJ, Park JH, Choi SW. 2002. Antioxidative flavonoids from leaves of Carthamus tinctorius. Arch. Pharm. Res. 25: 313-319. https://doi.org/10.1007/BF02976632
- Mbah CJ. 2007. Studies on the lipophilicity of vehicles (or co-vehicles) and botanical oils used in cosmetic products. Die Pharmazie 62: 351-353.
- Chen YS, Lee SM, Lin CC, Liu CY, Wu MC, Shi WL. 2013. Kinetic study on the tyrosinase and melanin formation inhibitory activities of carthamus yellow isolated from Carthamus tinctorius L. J. Biosci. Bioeng. 115: 242-245. https://doi.org/10.1016/j.jbiosc.2012.09.013
- Roh JS, Han JY, Kim JH, Hwang JK. 2004. Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biol. Pharm. Bull. 27: 1976-1978. https://doi.org/10.1248/bpb.27.1976
- Pan MH, Lai CS, Wang YJ, Ho CT. 2006. Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem. Pharmacol. 72: 1293-1303. https://doi.org/10.1016/j.bcp.2006.07.039
- Jung SK, Kim JE, Lee SY, Lee MH, Byun S, Kim YA, et al. 2014. The P110 subunit of PI3-K is a therapeutic target of acacetin in skin cancer. Carcinogenesis 35: 123-130. https://doi.org/10.1093/carcin/bgt266
- Lee KM, Lee DE, Seo SK, Hwang MK, Heo YS, Lee KW, et al. 2010. Phosphatidylinositol 3-kinase, a novel target molecule for the inhibitory effects of kaempferol on neoplastic cell transformation. Carcinogenesis 31: 1338-1343. https://doi.org/10.1093/carcin/bgq102
- Yao K, Chen H, Liu K, Langfald A, Yang G, Zhang Y, et al. 2014. Kaempferol targets RSK2 and MSK1 to suppress UV radiationinduced skin cancer. Cancer Prev. Res. (Phila) 7: 958-967. https://doi.org/10.1158/1940-6207.CAPR-14-0126
- Robinson MJ, Cobb MH. 1997. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9: 180-186. https://doi.org/10.1016/S0955-0674(97)80061-0
Cited by
- A Systematic Review of Antiaging Effects of 23 Traditional Chinese Medicines vol.2021, 2020, https://doi.org/10.1155/2021/5591573
- Investigation of the Factors Responsible for the Poor Oral Bioavailability of Acacetin in Rats: Physicochemical and Biopharmaceutical Aspects vol.13, pp.2, 2020, https://doi.org/10.3390/pharmaceutics13020175
- Vitexin에 의한 HDF 세포에서 UVB 유도 DRAM1-오토파지 단백질 vol.11, pp.2, 2020, https://doi.org/10.22156/cs4smb.2021.11.02.201