DOI QR코드

DOI QR Code

Suppression of Inflammation, Osteoclastogenesis and Bone Loss by PZRAS Extract

  • Li, Liang (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University) ;
  • Park, Young-Ran (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University) ;
  • Shrestha, Saroj Kumar (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University) ;
  • Cho, Hyoung-Kwon (Hanpoong Pharm and Foods Co., Ltd.) ;
  • Soh, Yunjo (Department of Dental Pharmacology, School of Dentistry, Jeonbuk National University)
  • Received : 2020.04.07
  • Accepted : 2020.08.12
  • Published : 2020.10.28

Abstract

Panax ginseng has a wide range of activities including a neuroprotective effect, skin protective effects, enhanced DNA repairing, anti-diabetic activity, and protective effects against vascular inflammation. In the present study, we sought to discover the inhibitory effects of a mixture of natural products containing Panax ginseng, Ziziphus jujube, Rubi fructus, Artemisiae asiaticae and Scutellaria baicalensis (PZRAS) on osteoclastogenesis and bone remodeling, as neither the effects of a mixture containing Panax ginseng extract, nor its molecular mechanism on bone inflammation, have been clarified yet. PZRAS upregulated the levels of catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSH-R) and glutathione peroxidase (GSH-Px) and reduced malondialdehyde (MDA) in LPS-treated RAW264.7 cells. Moreover, treatment with PZRAS decreased the production of IL-1β and TNF-α. PZRAS also inhibited osteoclast differentiation through inhibiting osteoclastspecific genes like MMP-2, 9, cathepsin K, and TRAP in RANKL-treated RAW264.7 cells. Additionally, PZRAS has inhibitory functions on the RANKL-stimulated activation of ERK and JNK, which lead to a decrease in the expression of NFATc1 and c-Fos. In an in vivo study, bone resorption induced by LPS was recovered by treatment with PZRAS in bone volume per tissue volume (BV/TV) compared to control. Furthermore, the ratio of eroded bone surface of femurs was significantly increased in LPS-treated mice compared to vehicle group, but this ratio was significantly reversed in PZRAS-treated mice. These results suggest that PZRAS could prevent or treat disorders with abnormal bone loss.

Keywords

References

  1. Ralston SH, de Crombrugghe B. 2006. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev. 20: 2492-2506. https://doi.org/10.1101/gad.1449506
  2. McGreevy C, Williams D. 2011. Safety of drugs used in the treatment of osteoporosis. Ther. Adv. Drug Saf. 2: 159-172. https://doi.org/10.1177/2042098611411012
  3. O'Regan RM, Gradishar WJ. 2001. Selective estrogen-receptor modulators in 2001. Oncology (Williston Park, NY) 15: 1177-1185.
  4. Rejnmark L, Mosekilde L. 2011. New and emerging antiresorptive treatments in osteoporosis. Curr. Drug Saf. 6: 75-88. https://doi.org/10.2174/157488611795684686
  5. Khosla S, Westendorf JJ, Oursler MJ. 2008. Building bone to reverse osteoporosis and repair fractures. J. Clin. Invest. 118: 421-428. https://doi.org/10.1172/JCI33612
  6. Jung HW, Seo UK, Kim JH, Leem KH, Park YK. 2009. Flower extract of Panax notoginseng attenuates lipopolysaccharide-induced inflammatory response via blocking of NF-kappaB signaling pathway in murine macrophages. J. Ethnopharmacol. 122: 313-319. https://doi.org/10.1016/j.jep.2008.12.024
  7. Jia M, Nie Y, Cao DP, Xue YY, Wang JS, Zhao L, et al. 2012. Potential antiosteoporotic agents from plants: a comprehensive review. Evid. Based Complement. Alternat. Med. 2012: 364604.
  8. Adegbola P, Aderibigbe I, Hammed W, Omotayo T. 2017. Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: a review. Am. J. Cardiovasc. Dis. 7: 19-32.
  9. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, et al. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9: 7204-7218. https://doi.org/10.18632/oncotarget.23208
  10. Kang HS, Lee JY, Kim CJ. 2008. Anti-inflammatory activity of arctigenin from Forsythiae Fructus. J. Ethnopharmacol. 116: 305-312. https://doi.org/10.1016/j.jep.2007.11.030
  11. Cui XY, Kim JH, Zhao X, Chen BQ, Lee BC, Pyo HB, et al. 2006. Antioxidative and acute anti-inflammatory effects of Campsis grandiflora flower. J. Ethnopharmacol. 103: 223-228. https://doi.org/10.1016/j.jep.2005.08.007
  12. Zhang XY, Tan YL, Cao LY, Wu GY, Xu Q, Shen Y, et al. 2005. Antioxidant enzymes and lipid peroxidation in different forms of schizophrenia treated with typical and atypical antipsychotics. Schizophr. Res. 81: 291-300. https://doi.org/10.1016/j.schres.2005.10.011
  13. Sontakke AN, Tare RS. 2002. A duality in the roles of reactive oxygen species with respect to bone metabolism. Clin. Chim. Acta 318: 145-148. https://doi.org/10.1016/S0009-8981(01)00766-5
  14. Nishihara T, Koseki T. 2000. Microbial etiology of periodontitis. Periodontol. 2000 36: 14-26. https://doi.org/10.1111/j.1600-0757.2004.03671.x
  15. Feng Z, Weinberg A. 2006. Role of bacteria in health and disease of periodontal tissues. Periodontol 2000 40: 50-76. https://doi.org/10.1111/j.1600-0757.2005.00148.x
  16. Guan SM, Shu L, Fu SM, Liu B, Xu XL, Wu JZ. 2009. Prevotella intermedia upregulates MMP-1 and MMP-8 expression in human periodontal ligament cells. FEMS Microbiol. Lett. 299: 214-222. https://doi.org/10.1111/j.1574-6968.2009.01748.x
  17. Visse R, Nagase H. 2003. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92: 827-839. https://doi.org/10.1161/01.RES.0000070112.80711.3D
  18. Sorsa T, Tjaderhane L, Konttinen YT, Lauhio A, Salo T, Lee HM, et al. 2006. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann. Med. 38: 306-321. https://doi.org/10.1080/07853890600800103
  19. Islam S, Hassan F, Tumurkhuu G, Dagvadorj J, Koide N, Naiki Y, et al. 2007. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells. Biochem Biophys. Res. Commun. 360: 346-351. https://doi.org/10.1016/j.bbrc.2007.06.023
  20. Smith BJ, Lerner MR, Bu SY, Lucas EA, Hanas JS, Lightfoot SA, et al. 2006. Systemic bone loss and induction of coronary vessel disease in a rat model of chronic inflammation. Bone 38: 378-386. https://doi.org/10.1016/j.bone.2005.09.008
  21. Itoh K, Udagawa N, Kobayashi K, Suda K, Li X, Takami M, et al. 2003. Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. J. Immunol. 170: 3688-3695. https://doi.org/10.4049/jimmunol.170.7.3688
  22. Zhang G, Liu A, Zhou Y, San X, Jin T, Jin Y. 2008. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J. Ethnopharmacol. 115: 441-448. https://doi.org/10.1016/j.jep.2007.10.026
  23. Cho YS, Kim CH, Ha TS, Lee SJ, Ahn HY. 2013. Ginsenoside rg2 inhibits lipopolysaccharide-induced adhesion molecule expression in human umbilical vein endothelial cell. Korean J. Physiol. Pharmacol. 17: 133-137. https://doi.org/10.4196/kjpp.2013.17.2.133
  24. Zhang H, Jiang L, Ye S, Ye Y, Ren F. 2010. Systematic evaluation of antioxidant capacities of the ethanolic extract of different tissues of jujube (Ziziphus jujuba Mill.) from China. Food Chem. Toxicol. 48: 1461-1465. https://doi.org/10.1016/j.fct.2010.03.011
  25. He JM, Chen SC, Li RP, Yuan LX, Bao JM, Guo ML. 2015. Suppression of nuclear factor-kappa B and mitogen-activated protein kinase signalling pathways by goshonoside-F5 extracted from Rubi Fructus. Int. Immunopharmacol. 24: 182-190. https://doi.org/10.1016/j.intimp.2014.12.007
  26. Diaz P, Jeong SC, Lee S, Khoo C, Koyyalamudi SR. 2012. Antioxidant and anti-inflammatory activities of selected medicinal plants and fungi containing phenolic and flavonoid compounds. Chin. Med. 7: 26. https://doi.org/10.1186/1749-8546-7-26
  27. Wang S, Li J, Sun J, Zeng KW, Cui JR, Jiang Y, et al. 2013. NO inhibitory guaianolide-derived terpenoids from Artemisia argyi. Fitoterapia 85: 169-175. https://doi.org/10.1016/j.fitote.2012.12.005
  28. Wong RW, Rabie AB. 2006. Traditional Chinese medicines and bone formation-a review. J. Oral Maxillofac. Surg. 64: 828-837. https://doi.org/10.1016/j.joms.2006.01.017
  29. Huet O, Petit JM, Ratinaud MH, Julien R. 1992. NADH-dependent dehydrogenase activity estimation by flow cytometric analysis of 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Cytometry 13: 532-539. https://doi.org/10.1002/cyto.990130513
  30. Prasad K, Mantha SV, Muir AD, Westcott ND. 2000. Protective effect of secoisolariciresinol diglucoside against streptozotocininduced diabetes and its mechanism. Mol. Cell Biochem. 206: 141-149. https://doi.org/10.1023/A:1007018030524
  31. Aebi H. Catalase in vitro. 1984. Methods Enzymol. 105: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  32. Choi HJ, Eun JS, Park YR, Kim DK, Li R, Moon WS, et al. 2008. Ikarisoside A inhibits inducible nitric oxide synthase in lipopolysaccharide-stimulated RAW 264.7 cells via p38 kinase and nuclear factor-kappaB signaling pathways. Eur. J. Pharmacol. 601: 171-178. https://doi.org/10.1016/j.ejphar.2008.09.032
  33. Choi HJ, Park YR, Nepal M, Choi BY, Cho NP, Choi SH, et al. 2010. Inhibition of osteoclastogenic differentiation by Ikarisoside A in RAW 264.7 cells via JNK and NF-kappaB signaling pathways. Eur. J. Pharmacol. 636: 28-35. https://doi.org/10.1016/j.ejphar.2010.03.023
  34. Nepal M, Choi HJ, Choi BY, Yang MS, Chae JI, Li L, et al. 2013. Hispidulin attenuates bone resorption and osteoclastogenesis via the RANKL-induced NF-kappaB and NFATc1 pathways. Eur. J. Pharmacol. 715: 96-104. https://doi.org/10.1016/j.ejphar.2013.06.002
  35. Luo A, Ge Z, Fan Y, Luo A, Chun Z, He X. 2011. In vitro and in vivo antioxidant activity of a water-soluble polysaccharide from Dendrobium denneanum. Molecules 16: 1579-1592. https://doi.org/10.3390/molecules16021579
  36. Arango Duque G, Descoteaux A. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5: 491
  37. Wojdasiewicz P, Poniatowski LA, Szukiewicz D. 2014. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014: 561459. https://doi.org/10.1155/2014/561459
  38. Sundaram K, Nishimura R, Senn J, Youssef RF, London SD, Reddy SV. 2007. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation. Exp. Cell Res. 313: 168-178. https://doi.org/10.1016/j.yexcr.2006.10.001
  39. Lee KH, Seo IC, Choi MH, Jeong DW. 2018. Roles of mitogen-activated protein kinases in osteoclast biology. Int. J. Mol. Sci. 19: 3004-3024. https://doi.org/10.3390/ijms19103004
  40. Raphael H, Eric J, Rajaram G, Kim CM. 2019. Bone morphogenetic proteins: Their role in regulating osteoclast differentiation. Bone Rep. 10: 100207-100216. https://doi.org/10.1016/j.bonr.2019.100207
  41. Suda T, Nakamura I, Jimi E, Takahashi N. 1997. Regulation of osteoclast function. J. Bone Miner. Res. 12: 869-79.42. https://doi.org/10.1359/jbmr.1997.12.6.869
  42. Wong BR, Josien R, Lee SY, Vologodskaia M, Steinman RM, Choi Y. 1998. The TRAF family of signal transducers mediates NF-${\kappa}B$ activation by the TRANCE receptor. J. Biol. Chem. 273: 28355-28359. https://doi.org/10.1074/jbc.273.43.28355
  43. Sheeba MS, Asha VV. 2009. Cardiospermum halicacabum ethanol extract inhibits LPS induced COX-2, TNF-alpha and iNOS expression, which is mediated by NF-kappa B regulation, in AW264.7 cells. J. Ethnopharmacol. 124: 39-44. https://doi.org/10.1016/j.jep.2009.04.020
  44. Park JY, Cho HY, Kim JK, Noh KH, Yang JR, Ahn JM, et al. 2005. Chlorella dichloromethane extract ameliorates NO production and iNOS expression through the down-regulation of NF kappa B activity mediated by suppressed oxidative stress in RAW 264.7 macrophages. Clin. Chim. Acta 351: 185-196. https://doi.org/10.1016/j.cccn.2004.09.013
  45. Soufli I, Toumi R, Rafa H, Touil-Boukoffa C. 2016. Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J. Gastrointest. Pharmacol. Ther. 6: 353-360.
  46. Song SB, Tung NH, Quang TH, Ngan NT, Kim KE, Kim YH. 2012. Inhibition of TNF-alpha-mediated NF-kappaB transcriptional activity in HepG2 cells by dammarane-type sponins from Panax ginseng leaves. J. Ginseng Res. 36: 146-152. https://doi.org/10.5142/jgr.2012.36.2.146
  47. Balli U, Cetinkaya BO, Keles GC, Keles ZP, Guler S, Sogut MU, et al. 2016. Assessment of MMP-1, MMP-8 and TIMP-2 in experimental periodontitis treated with kaempferol. J. Periodontal Implant Sci. 46: 84-95. https://doi.org/10.5051/jpis.2016.46.2.84