References
- imFactbook. 2020. imFact Publishing Co. Korea pp. 322-338. http://www.imfactbook.com
- Kitagawa I, Taniyama T, Shibuya H, Noda T, Yoshikawa M. 1987. Chemical studies on crude drug processing. V. on the constituents of ginseng radix rubra (2): Comparison of the constituents of white ginseng and red ginseng prepared from the same Panax ginseng root. Yakugaku Zasshi. 107: 495-505. https://doi.org/10.1248/yakushi1947.107.7_495
- Kim M, Ko S, Choi K, Kim S. 1987. Distribution of saponin in various sections of Panax ginseng root and changes of its contents according to root age. Korean J. Ginseng Sci. 11: 10-16.
- Son JW, Kim HJ, Oh DK. 2008. Ginsenoside Rd production from the major ginsenoside Rb(1) by beta-glucosidase from Thermus caldophilus. Biotechnol. Lett. 30: 713-716. https://doi.org/10.1007/s10529-007-9590-4
- Wang L, Zhang Y, Chen J, Li S, Wang Y, Hu L, et al. 2012. Immunosuppressive effects of ginsenoside-Rd on skin allograft rejection in rats. J. Surg. Res. 176: 267-274. https://doi.org/10.1016/j.jss.2011.06.038
- Yang XL, Guo TK, Wang YH, Huang YH, Liu X, Wang XX, et al. 2012. Ginsenoside Rd attenuates the inflammatory response via modulating p38 and JNK signaling pathways in rats with TNBS-induced relapsing colitis. Int. Immunopharmacol. 12: 408-414. https://doi.org/10.1016/j.intimp.2011.12.014
- Lee JH, Cho SH, Yun MY, An S, Jang HH, Lee SN, et al. 2015. Anti-wrinkle effect of rare ginsenosides, produced from ginsenoside Rd. Kor. J. Aesthet Cosmetol. 13: 909-916.
- Kim DH, Chung JH, Yoon JS, Ha YM, Bae S, Lee EK, et al. 2013. Ginsenoside Rd inhibits the expressions of iNOS and COX-2 by suppressing NF-kappaB in LPS-stimulated RAW264.7 cells and mouse liver. J. Ginseng Res. 37: 54-63. https://doi.org/10.5142/jgr.2013.37.54
- Wang B, Feng G, Tang C, Wang L, Cheng H, Zhang Y, et al. 2013. Ginsenoside Rd maintains adult neural stem cell proliferation during lead-impaired neurogenesis. Neurol. Sci. 34: 1181-1188. https://doi.org/10.1007/s10072-012-1215-6
- Gray SR, Rawsthorne H, Dirks B, Phister TG. 2011. Detection and enumeration of Dekkera anomala in beer, cola, and cider using real-time PCR. Lett. Appl. Microbiol. 52: 352-359. https://doi.org/10.1111/j.1472-765X.2011.03008.x
-
Renchinkhand G, Park YW, Song GY, Cho SH, Urgamal M, Bae HC, et al. 2016. Identification of
${\beta}$ -glucosidase activity of Enterococcus faecalis CRNB-A3 in Airag and its potential to convert ginsenoside$Rb_1$ from Panax ginseng. J. Food Biochem. 40: 120-129. https://doi.org/10.1111/jfbc.12201 -
Renchinkhand G, Cho SH, Urgamal M, Park YW, Nam JH, Bae HC, et al. 2017. Characterization of Paenibacillus sp. MBT213 isolated from raw milk and its ability to convert ginsenoside
$Rb_1$ into ginsenoside Rd from Panax ginseng. Kor. J. Food Sci. Anim. Resour. 37: 735-742. https://doi.org/10.5851/kosfa.2017.37.5.735 - Kim MK, Lee JW, Lee KY, Yang DC. 2005. Microbial conversion of major ginsenoside Rb(1) to pharmaceutically active minor ginsenoside Rd. J. Microbiol. 43: 456-462.
-
Cheng LQ, Kim MK, Lee JW, Lee YJ, Yang DC. 2006. Conversion of major ginsenoside
$Rb_1$ to ginsenoside$F_2$ by Caulobacter leidyia. Biotechnol. Lett. 28: 1121-1127. https://doi.org/10.1007/s10529-006-9059-x - Wu L, Yin Z, Fu Y, Yin C. 2012. Biotransformation of major ginsenosides into compound K by a new Penicillium dipodomyicola strain isolated from the soil of wild ginseng. Afr. J. Biotechnol. 11: 15905-15915. https://doi.org/10.5897/AJB12.2208
-
Ji MN, Jung JE, Yoon HJ, Chang KH, Jee HS, Kim KT, et al. 2014. Bioconversion of ginsenoside
$Rb_1$ to the pharmaceutical ginsenoside compound K using Aspergillus usamii KCTC 6954. Kor. J. Microbiol. Biotechnol. 42: 347-353. https://doi.org/10.4014/kjmb.1407.07010 - Lee S, Lee YH, Park JM, Bai DH, Jang JK, Park YS. 2014. Bioconversion of ginsenosides from red ginseng extract using Candida allociferrii JNO301 isolated from meju. Mycobiology 42: 368-375. https://doi.org/10.5941/MYCO.2014.42.4.368
-
Zhao X, Gao L, Wang J, Bi H, Gao J, Du X, et al. 2009. A novel ginsenoside
$Rb_1$ -hydrolyzing${\beta}$ -d-glucosidase from Cladosporium fulvum. Process Biochem. 44: 612-618. https://doi.org/10.1016/j.procbio.2009.01.016 - Production of minor ginseng saponins and intestine bacterial ginseng saponin metabolites by enzymatic method. The 10th International Symposium on Ginseng, September 13-16, pp. 268, Seoul, Korea.
-
Chang KH, Jo MN, Kim KT, Paik HD. 2014. Evaluation of glucosidases of Aspergillus niger strain comparing with other glucosidases in transformation of ginsenoside
$Rb_1$ to ginsenosides$Rg_3$ . J. Ginseng Res. 38: 47-51. https://doi.org/10.1016/j.jgr.2013.11.008 -
Ye L, Zhou CQ, Zhou W, Zhou P, Chen DF, Liu XH, et al. 2010. Biotransformation of ginsenoside
$Rb_1$ to ginsenoside Rd by highly substrate-tolerant Paecilomyces bainier 229-7. Bioresour. Technol. 101: 7872-7876. https://doi.org/10.1016/j.biortech.2010.04.102 - Chi H, Ji G-E. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765-771. https://doi.org/10.1007/s10529-005-5632-y
Cited by
- Two Key Amino Acids Variant of α-l-arabinofuranosidase from Bacillus subtilis Str. 168 with Altered Activity for Selective Conversion Ginsenoside Rc to Rd vol.26, pp.6, 2021, https://doi.org/10.3390/molecules26061733