DOI QR코드

DOI QR Code

Comparative Study on the Performance of Small Satellites Launch Vehicle Employing ElecPump Cycle Upper Stage Engine

전기펌프 사이클 상단 엔진을 적용한 소형발사체 성능 비교연구

  • Yu, Byungil (Engine Test and Evaluation Team, Korea Aerospace Research Institute) ;
  • Kwak, Hyun-Duck (Turbopump Team, Korea Aerospace Research Institute) ;
  • Kim, Hongjip (Department of Mechanical Engineering, Chungnam National University)
  • 유병일 (한국항공우주연구원 엔진시험평가팀) ;
  • 곽현덕 (한국항공우주연구원 터보펌프팀) ;
  • 김홍집 (충남대학교 기계공학과)
  • Received : 2020.07.14
  • Accepted : 2020.08.29
  • Published : 2020.10.31

Abstract

The performance analysis of the small satellites launch vehicle using the electric pump cycle as the upper stage engines was performed. The first stage is the launch vehicle that uses the test launch vehicle of the Korea Space Launch Vehicle II and the second stage employs elecpump cycle engine that uses liquid methane and kerosene (RP-1) as fuel. A model for the mass estimation was presented and the analysis was conducted for the range of thrust of 20 to 40 kN and combustion pressure of 3 to 6 MPa with a nozzle expansion ratio of 60 to 100. The mixture ratio with the maximum velocity increment was calculated and the performance of the LEO and SSO payload were calculated from the stage mass estimation. In both the cases, liquid methane, and RP-1 showed maximum payload for 20 kN thrust, 3 MPa combustion pressure, and the nozzle expansion ratio of 100, with a mixture ratio of 3.49 for liquid methane and 2.75 for RP-1. In addition, the ditching points of the first stage and the fairing in the LEO mission were analyzed using ASTOS.

전기펌프 사이클을 상단 엔진으로 사용하는 2단형 소형발사체의 성능 해석을 수행하였다. 1단은 한국형발사체 시험발사체를 사용하고 상단은 액체메탄과 케로신(RP-1)을 연료로 사용하는 전기펌프 사이클엔진을 상정하였다. 상단 질량 예측을 위한 모델을 제시하고, 총 역적을 고정한 상태에서 20~40 kN의 추력과 연소압력 3~6 MPa, 노즐 확대비 60~100의 범위에 대하여 해석을 실시하였다. 최대 속도증분을 가지는 혼합비를 제시하고 단 질량 예측을 통해 LEO(Low Earth Orbit)와 SSO(Sun Synchronous Orbit) 궤도투입 성능을 계산하였다. 액체메탄, RP-1 두 경우 모두 추력 20 kN, 연소압력 3 MPa, 확대비 100의 경우에 최대 궤도투입중량의 결과를 보였으며, 이 때의 혼합비는 액체메탄의 경우 3.49, RP-1의 경우 2.75이다. 또한 ASTOS를 이용하여 LEO 임무일 경우의 1단 및 페어링의 낙하점을 분석하였다.

Keywords

References

  1. Satellites to be Built and Launched by 2028, Euroconsult, http://euroconsult-ec.com/node/565, accessed on 30 March, 2020.
  2. C. Niederstrasser and W. Frick, "Small Launch Vehicles - A 2016 State of the Industry Survey", IAC-16-B4.5.10, 2016.
  3. 3rd Basic Plan for Space Development, Ministry of Science and ICT, Republic of Korea, 2020.
  4. J. E. Kim and J. Y. Choi, "Analysis of small projectile transport capacity improved KSLV-II TLV", Proc. of the Korean Society of Propulsion Engineers Fall Conf., pp. 334-338, 2018.
  5. T. M. Abel and T. A. Velez, "Electrical drive system for rocket propellant pumps", US patent, Registration No. 0647306, 2002.
  6. RocketLab, http://www.rocketlabusa.com, accessed on 27 February, 2020.
  7. W. S. Yang, S. Y. Kim and J. Y. Choi, "Performance Analysis of Derivative Type and Advanced Type of KSLV-II", Proc. of the Korean Society of Propulsion Engineers Spring Conf., pp. 424-427, 2013.
  8. W. R. Roh, S. B. Cho, B. C. Son, K. S. Choi, D. W. Jeong, C. H. Park, J. S. Oh and T. H. Park, "Mission and System Design Status of Korea Space Launch Vehicle-II succeeding Naro Launch Vehicle", Proc. of the Korean Society of Aeronautical and Space Sciences Fall Conf., pp. 233-239, 2012.
  9. W. R. Roh and S. R. Lee, "Staging Design Analysis of a Low-Cost Two-Stage Small Satellite Launch Vehicle", Proc. of the Korean Society of Propulsion Engineers Spring Conf., pp. 466-471, 2019.
  10. H. D. Kwak, S. Kwon and C. H. Choi, "Performance assessment of electrically driven pump-fed Lox/kerosene cycle rocket engine: Comparison with gas generator cycle", Aerospace Science and Technology, Vol. 77(C), pp. 67-82, 2018. https://doi.org/10.1016/j.ast.2018.02.033
  11. H. D. Kwak, D. J. Kim, J. S. Kim, J. Kim, J. G. Noh, P. G. Park, J. H. Bae, J. H. Shin, S. H. Yoon, H. Lee, "Performance test of a 7 tonf liquid rocket engine turopump", J. of Korean Society of Propulsion Engineers, Vol. 19, pp. 65-72, 2015.
  12. Glenn Research Center, NASA, Chemical Equilibrium Analysis, http://cearun.grc.nasa.gov, accessed on 27 February, 2020.
  13. H. D. Kwak and C. H. Choi, Preliminary Design of Low Thrust LOX/Methane ElecPump Cycle Rocket Engine", Proc. of the Society for Aerospace System Engineering Spring Conf., 2019.
  14. G. P. Sutton and O. Biblarz, Rocket Propulsion Elements, 8th Ed., Wiley, New York, 2010.
  15. H. D. Kwak, "Electrically Driven Pump-Fed Cycle Rocket Engine", Ph. D. Dissertation, Korea Advanced Institute of Science and Technology, 2019.
  16. P. A. Pavlo Rachov, H. Tacca, and D. Lentini, "Electric feed systems for liquid-propellant rockets", J. of Propulsion and Power, Vol. 29, pp. 1171-1180, 2013. https://doi.org/10.2514/1.B34714
  17. J. M. Tizon and A. Roman, "A Mass Model for Liquid Propellant Rocket Engines", Proc. of 53rd AIAA/SAE/ASEE Joint Propulsion Conf., AIAA-2017-5010, 2017.
  18. D. K. Huzel and D. H. Huang, Design and Liquid Propellant Rocket Engines, NASA SP-125, National Aeronautics and Space Administration (NASA), 1971.
  19. R.W. Humble, H. N. Gary and W. J. Larson, Space propulsion analysis and design, McGraw Hill, NY, 1995.
  20. Astos Solutions, http://www.astos.de, accessed on 09 July, 2020.