DOI QR코드

DOI QR Code

20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway

  • Xia, Ting (State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology) ;
  • Zhang, Jin (State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology) ;
  • Zhou, Chuanxin (Department of Pediatrics, The Fifth Hospital of Sun Yat Sen University, Sun Yat sen University) ;
  • Li, Yu (State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology) ;
  • Duan, Wenhui (State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology) ;
  • Zhang, Bo (State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology) ;
  • Wang, Min (State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology) ;
  • Fang, Jianpei (Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University)
  • Received : 2019.03.26
  • Accepted : 2019.07.24
  • Published : 2020.09.15

Abstract

Background: T-cell acute lymphoblastic leukemia (T-ALL) is a kind of aggressive hematological cancer, and the PI3K/Akt/mTOR signaling pathway is activated in most patients with T-ALL and responsible for poor prognosis. 20(S)-Ginsenoside Rh2 (20(S)-GRh2) is a major active compound extracted from ginseng, which exhibits anti-cancer effects. However, the underlying anticancer mechanisms of 20(S)-GRh2 targeting the PI3K/Akt/mTOR pathway in T-ALL have not been explored. Methods: Cell growth and cell cycle were determined to investigate the effect of 20(S)-GRh2 on ALL cells. PI3K/Akt/mTOR pathway-related proteins were detected in 20(S)-GRh2-treated Jurkat cells by immunoblotting. Antitumor effect of 20(S)-GRh2 against T-ALL was investigated in xenograft mice. The mechanisms of 20(S)-GRh2 against T-ALL were examined by cell proliferation, apoptosis, and autophagy. Results: In the present study, the results showed that 20(S)-GRh2 decreased cell growth and arrested cell cycle at the G1 phase in ALL cells. 20(S)-GRh2 induced apoptosis through enhancing reactive oxygen species generation and upregulating apoptosis-related proteins. 20(S)-GRh2 significantly elevated the levels of pEGFP-LC3 and autophagy-related proteins in Jurkat cells. Furthermore, the PI3K/Akt/mTOR signaling pathway was effectively blocked by 20(S)-GRh2. 20(S)-GRh2 suppressed cell proliferation and promoted apoptosis and autophagy by suppressing the PI3K/Akt/mTOR pathway in Jurkat cells. Finally, 20(S)-GRh2 alleviated symptoms of leukemia and reduced the number of white blood cells and CD3 staining in the spleen of xenograft mice, indicating antitumor effects against T-ALL in vivo. Conclusion: These findings indicate that 20(S)-GRh2 exhibits beneficial effects against T-ALL through the PI3K/Akt/mTOR pathway and could be a natural product of novel target for T-ALL therapy.

Keywords

References

  1. Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood 2015;125:3977-87. https://doi.org/10.1182/blood-2015-02-580043
  2. Winter SS, Sweatman J, Shuster JJ, Link MP, Amylon MD, Pullen J, Camitta BM, Larson RS. Bone marrow stroma-supported culture of T-lineage acute lymphoblastic leukemic cells predicts treatment outcome in children: a pediatric oncology group study. Leukemia 2002;16:1121-6. https://doi.org/10.1038/sj.leu.2402469
  3. Matloub Y, Stork L, Asselin B, Matloub Y, Stork L, Asselin B, Hunger SP, Borowitz M, Jones T, Bostrom B, et al. Outcome of children with standard-risk T-lineage acute lymphoblastic leukemia-comparison among different treatment strategies. Pediatr Blood Cancer 2015;63:255-61. https://doi.org/10.1002/pbc.25793
  4. Preijers FW, De WT, Wessels JM, De Gast GC, Van Leeuwen E, Capel PJ, Haanen C. Autologous transplantation of bone marrow purged in vitro with anti-CD7-(WT1-) ricin A immunotoxin in T-cell lymphoblastic leukemia and lymphoma. Blood 1989;74:1152-8. https://doi.org/10.1182/blood.V74.3.1152.1152
  5. Jin KH, Pitna K, Young SC. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res 2013;37:8-29. https://doi.org/10.5142/jgr.2013.37.8
  6. Poindexter BJ, Allison AW, Bick RJ, Dasqupta A. Ginseng: cardiotonic in adult rat cardiomyocytes, cardiotoxic in neonatal rat cardiomyocytes. Life Sci 2006;79:2337-44. https://doi.org/10.1016/j.lfs.2006.07.038
  7. Keum YS, Park KK, Lee JM, Chun KS, Park JH, Seung KL, Kwon H, Surh YJ. Antioxidant and anti-tumor promoting activities of the methanol extract of heat-processed ginseng. Cancer Lett 2000;150:41-8. https://doi.org/10.1016/S0304-3835(99)00369-9
  8. Liang Y, Zhao S. Progress in understanding of ginsenoside biosynthesis. Plant Biol 2008;10:415-21. https://doi.org/10.1111/j.1438-8677.2008.00064.x
  9. Han S, Jeong AJ, Yang H, Kang KB, Lee H, Yi EH, Kim BH, Cho CH, Chung JW, Sung SH, et al. Ginsenoside 20(S)-Rh2 exerts anti-cancer activity through targeting IL-6-induced JAK2/STAT3 pathway in human colorectal cancer cells. J Ethnopharmacol 2016;194:83-90. https://doi.org/10.1016/j.jep.2016.08.039
  10. Tang XP, Tang GD, Fang CY, Liang ZH, Zhang LY. Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells. World J Gastroenterol 2013;19:1582-92. https://doi.org/10.3748/wjg.v19.i10.1582
  11. Zhuang J, Yin J, Xu C, Mu Y, Lv S. 20(S)-Ginsenoside Rh2 induce the apoptosis and autophagy in U937 and K562 cells. Nutrients 2018;10:328. https://doi.org/10.3390/nu10030328
  12. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 2012;45:487-98. https://doi.org/10.1111/j.1365-2184.2012.00845.x
  13. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770-6. https://doi.org/10.1038/35037710
  14. Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007;8:931-7. https://doi.org/10.1038/nrm2245
  15. Gurusamy N, Lekli I, Gherghiceanu M, Popescu LM, Das DK. BAG-1 induces autophagy for cardiac cell survival. Autophagy 2009;5:120-1. https://doi.org/10.4161/auto.5.1.7303
  16. Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK. Autophagy and apoptosis: where do they meet? Apoptosis 2014;19:555-66. https://doi.org/10.1007/s10495-014-0967-2
  17. Saiki S, Sasazawa Y, Imamichi Y, Kawajiri S, Fujimaki T, Tanida I, Kobayashi H, Sato F, Sato S, Ishikawa K, et al. Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 2011;7:176-87. https://doi.org/10.4161/auto.7.2.14074
  18. Zhao ZQ, Zhong-Yang YU, Jie LI, Ouyang XN. Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway. Oncol Lett 2016;12:63-8. https://doi.org/10.3892/ol.2016.4606
  19. Silva A, Yunes JY, Cardoso BA, Martins LR, Jotta PY, Abecasis M, Nowill NE, Leslie NR, Cardoso AA, Barata JT. PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest 2008;118:3762-74. https://doi.org/10.1172/JCI34616
  20. Neri LM, Cani A, Martelli AM, Simioni C, Junghanss C, Tabellini G, Ricci F, Tazzari PL, Pagliaro P, McCubrey JA, et al. Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia 2014;28:739-48. https://doi.org/10.1038/leu.2013.226
  21. Gazi M, Moharram SA, Marhall A, JU Kazi. The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL). Cancer Lett 2017;392:9-16. https://doi.org/10.1016/j.canlet.2017.01.035
  22. Xia T, Wang JC, Xu W, Xu LH, Lao CH, Ye QX, Fang JP. 20S-Ginsenoside Rh2 induces apoptosis in human Leukaemia Reh cells through mitochondrial signaling pathways. Biol Pharm Bull 2014;37:248-54. https://doi.org/10.1248/bpb.b13-00667
  23. Xia T, Wang YN, Zhou CX, Wu LM, Liu Y, Zeng QH, Zhang XL, Yao JH, Wang M, Fang JP. Ginsenoside Rh2 and Rg3 inhibit cell proliferation and induce apoptosis by increasing mitochondrial reactive oxygen species in human leukemia Jurkat cells. Mol Med Rep 2017;15:3591-8. https://doi.org/10.3892/mmr.2017.6459
  24. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi T, Yoshimori Y. LC3/a mammalian homolog of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 2000;19:15720-8.
  25. Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ, Lee SJ, Choi KS. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res 2007;67:6314-24. https://doi.org/10.1158/0008-5472.CAN-06-4217
  26. Bertacchini J, Heidari N, Mediani L, Capitani S, Shahjahani M, Ahmadzadeh A, Saki N. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell Mol Life Sci 2015;72:2337-47. https://doi.org/10.1007/s00018-015-1867-5
  27. Fingar DC, Salama S, Tsou C, Harlow E, Blenis J. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 2002;16:1472-87. https://doi.org/10.1101/gad.995802
  28. Parker C, Waters R, Leighton C, Hancock J, Sutton R, Moorman AV, Ancliff P, Morgan M, Masurekar A, Goulden N, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet 2010;376:2009-17. https://doi.org/10.1016/S0140-6736(10)62002-8
  29. Silva A, Girio A, Cebola I, Santos CI, Antunes F, Barata GT. Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells. Leukemia 2011;39:960-7.
  30. Choi S, Kim TW, Singh SV. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases. Pharm Res 2009;26:2280-8. https://doi.org/10.1007/s11095-009-9944-9
  31. An IS, An S, Kwon KJ, Kim YJ, Bae S. Ginsenoside Rh2 mediates changes in the microRNA expression profile of human non-small cell lung cancer A549 cells. Oncol Rep 2013;29:523-8. https://doi.org/10.3892/or.2012.2136
  32. Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, Du W. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett 2011;301:185-92. https://doi.org/10.1016/j.canlet.2010.11.015
  33. Cheng CC, Yang SM, Huang CY, Chen JC, Chang WM, Hsu SL. Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells. Cancer Chemoth Pharm 2005;55:531-40. https://doi.org/10.1007/s00280-004-0919-6
  34. Yang J, Yuan D, Xing T, Su H, Zhang S, Wen J, Bai Q, Dang D. Ginsenoside Rh2 inhibiting HCT116 colon cancer cell proliferation through blocking PDZbinding kinase/T-LAK cell-originated protein kinase. J Ginseng Res 2016;40:400-8. https://doi.org/10.1016/j.jgr.2016.03.007
  35. Bayir H, Kagan VE. Bench-to-bedside review: mitochondrial injury, oxidative stress and apoptosis - there is nothing more practical than a good theory. Crit Care 2008;12:206. https://doi.org/10.1186/cc6779
  36. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2011;451:1069-75. https://doi.org/10.1038/nature06639
  37. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006;10:51-64. https://doi.org/10.1016/j.ccr.2006.06.001
  38. Aparicio IM, Espino J, Bejarano I, Gallardo-Soler A, Campo ML, Salido GM, Pariente JA, Pena FJ, Tapia JA. Autophagy-related proteins are functionally active in human spermatozoa and may be involved in the regulation of cell survival and motility. Sci Rep 2016;6:33647. https://doi.org/10.1038/srep33647
  39. Lien EC, Lyssiotis CA, Cantley LC. Metabolic reprogramming by the PI3K-AktmTOR pathway in cancer. Recent Results Cancer Res 2016;207:39-72. https://doi.org/10.1007/978-3-319-42118-6_3
  40. Jr PJ, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther 2014;142:164-75. https://doi.org/10.1016/j.pharmthera.2013.12.004
  41. Morgensztern D, Mcleod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anti-cancer Drug 2005;16:797-803. https://doi.org/10.1097/01.cad.0000173476.67239.3b
  42. Lonetti A, Cappellini A, Bertaina A, Locatelli F, Pession A, Buontempo F, Evangelisti C, Evangelisti C, Orsini E, Zambonin L, et al. Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway. J Hematol Oncol 2016;9:114. https://doi.org/10.1186/s13045-016-0344-4
  43. Keppler-Noreuil KM, Parker VE, Darling TN, Martinez-Agosto JA. Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & therapeutic strategies. Am J of Med Genet C Semin Med Genet 2016;172:402-21. https://doi.org/10.1002/ajmg.c.31531
  44. Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 1991;143:3050-60. https://doi.org/10.1242/dev.137075
  45. Heinonen H, Nieminen A, Saarela M, Kallioniemi A, Klefstrom J, Hautaniemi S, Monni O. Deciphering downstream gene targets of PI3K/mTOR/p70S6K pathway in breast cancer. BMC Genomics 2008;9:348. https://doi.org/10.1186/1471-2164-9-348
  46. Gao N, Zhang Z, Jiang BH, Shi X. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem Biophys Res Commun 2003;310:1124-32. https://doi.org/10.1016/j.bbrc.2003.09.132
  47. Sui T, Li MA, Bai X, Li Q, Xu X. Resveratrol inhibits the phosphatidylinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway in the human chronic myeloid leukemia K562 cell line. Oncol Lett 2014;7:2093-8. https://doi.org/10.3892/ol.2014.2014
  48. Hsieh YC, Athar M, Chaudry IH. When apoptosis meets autophagy: deciding cell fate after trauma and sepsis. Trends Mol Med 2009;15:129-38. https://doi.org/10.1016/j.molmed.2009.01.002
  49. Zhang L, Wang H, Zhu J, Ding K. Mollugin induces tumor cell apoptosis and autophagy via the PI3K/AKT/mTOR/p70S6K and ERK signaling pathways. Biochem Bioph Res Co 2014;450:247-54. https://doi.org/10.1016/j.bbrc.2014.05.101
  50. Sanda T, Li X, Gutierrez A, Ahn Y, Neuberg DS, O'Neil J, Strack PR, Winter SS, Winter CG, Larson RS, et al. Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia. Blood 2010;115:1735-45. https://doi.org/10.1182/blood-2009-07-235143
  51. Shrivastava S, Kulkarni P, Thummuri D, Jeengar MK, Naidu VG, Alvala M, Redddy GB, Ramakrishna S. Piperlongumine, an alkaloid causes inhibition of PI3 K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells. Apoptosis 2014;19:1148-64. https://doi.org/10.1007/s10495-014-0991-2
  52. Chagin AS. Effectors of mTOR-autophagy pathway: targeting cancer, affecting the skeleton. Curr Opin Pharmacol 2016;28:1-7. https://doi.org/10.1016/j.coph.2016.02.004

Cited by

  1. Analysis and Anticancer Effects of Active Compounds from Spatholobi Caulis in Human Breast Cancer Cells vol.8, pp.9, 2020, https://doi.org/10.3390/pr8091193
  2. Preventive Effect of Muscone against Cisplatin Nephrotoxicity in LLC-PK1 Cells vol.10, pp.10, 2020, https://doi.org/10.3390/biom10101444
  3. Role of Autophagy and Apoptosis in Acute Lymphoblastic Leukemia vol.28, 2020, https://doi.org/10.1177/10732748211019138
  4. Neuroprotective Effect of Gallocatechin Gallate on Glutamate-Induced Oxidative Stress in Hippocampal HT22 Cells vol.26, pp.5, 2020, https://doi.org/10.3390/molecules26051387
  5. Chaetocochin J, an epipolythiodioxopiperazine alkaloid, induces apoptosis and autophagy in colorectal cancer via AMPK and PI3K/AKT/mTOR pathways vol.109, 2020, https://doi.org/10.1016/j.bioorg.2021.104693
  6. Ginsenoside CK induces apoptosis of human cervical cancer HeLa cells by regulating autophagy and endoplasmic reticulum stress vol.12, pp.12, 2020, https://doi.org/10.1039/d1fo00348h
  7. Investigation of the lipidomic changes in differentiated glioblastoma cells after drug treatment using MALDI-MS vol.233, 2020, https://doi.org/10.1016/j.talanta.2021.122570