References
- Dubey JP, Jones JL. Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol 2008;38:1257-78. https://doi.org/10.1016/j.ijpara.2008.03.007
- Zhang JL, Si HF, Shang XF, Zhang XK, Li B, Zhou XZ, Zhang JY. New life for an old drug: In vitro and in vivo effects of the anthelmintic drug niclosamide against Toxoplasma gondii RH strain. Int J Parasitol Drugs Drug Resist 2018;9:27-34.
- Zhang YH, Chen H, Chen Y, Wang L, Cai YH, Li M, Wen HQ, Du J, An R, Luo QL, et al. Activated microglia contribute to neuronal apoptosis in Toxoplasmic encephalitis. Parasit Vectors 2014;7:372. https://doi.org/10.1186/1756-3305-7-372
- Connolly MP, Goodwin E, Schey C, Zummo J. Toxoplasmic encephalitis relapse rates with pyrimethamine-based therapy: systematic review and meta-analysis. Pathog Glob Health 2017;111:31-44. https://doi.org/10.1080/20477724.2016.1273597
- Ben-Harari RR, Goodwin E, Casoy J. Adverse event profile of pyrimethaminebased therapy in toxoplasmosis: a systematic review. Drugs R D 2017;17:523-44. https://doi.org/10.1007/s40268-017-0206-8
- Kim YS, Woo JY, Han CK, Chang IM. Safety analysis of Panax ginseng in randomized clinical trials: a systematic review. Medicines 2015;2:106-26. https://doi.org/10.3390/medicines2020106
- Hu JN, Xu XY, Li W, Wang YM, Liu Y, Wang Z, Wang YP. Ginsenoside Rk1 ameliorates paracetamol-induced hepatotoxicity in mice through inhibition of inflammation, oxidative stress, nitrative stress and apoptosis. J Ginseng Res 2019;43:10-19. https://doi.org/10.1016/j.jgr.2017.07.003
- Vinoth Kumar R, Oh TW, Park YK. Anti-inflammatory effects of ginsenoside-Rh2 Inhibits LPS-induced activation of microglia and overproduction of inflammatory mediators via modulation of TGF-b1/Smad pathway. Neurochem Res 2016;41:951-7. https://doi.org/10.1007/s11064-015-1804-x
- Li LC, Piao HM, Zheng MY, Lin ZH, Choi YH, Yan GH. Ginsenoside Rh2 attenuates allergic airway inflammation by modulating nuclear factor-kB activation in a murine model of asthma. Mol Med Rep 2015;12:6946-54. https://doi.org/10.3892/mmr.2015.4272
- Park HM, Kim SJ, Mun AR, Go HK, Kim GB, Kim SZ, Jang SI, Lee SJ, Kim JS, Kang HS. Korean red ginseng and its primary ginsenosides inhibit ethanolinduced oxidative injury by suppression of the MAPK pathway in TIB-73 cells. J Ethnopharmacol 2012;141:1071-6. https://doi.org/10.1016/j.jep.2012.03.038
- Kim KH, Lee D, Lee HL, Kim CE, Jung K, Kang KS. Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions. J Ginseng Res 2018;42:239-47. https://doi.org/10.1016/j.jgr.2017.03.011
- Zhuo XH, Sun HC, Wang SH, Guo XL, Ding HJ, Yang Y, Shan Y, Du AF. Ginseng stem-and-leaf saponin (GSLS)-enhanced protective immune responses induced by Toxoplasma gondii heat shocked protein 70 (HSP70) against toxoplasmosis in mice. J Parasitol 2017;103:111-7. https://doi.org/10.1645/16-54
- Qu D, Han J, Du A. Enhancement of protective immune response to recombinant Toxoplasma gondii ROP18 antigen by ginsenoside Re. Exp Parasitol 2013;135:234-9. https://doi.org/10.1016/j.exppara.2013.07.013
- Luo W, Aosai F, Ueda M, Yamashita K, Shimizu K, Sekiya S, Yano A. Kinetics in parasite abundance in susceptible and resistant mice infected with an avirulent strain of Toxoplasma gondii by using quantitative competitive PCR. J Parasitol 1997;83:1070-4. https://doi.org/10.2307/3284364
- Sudan V, Tewari AK, Singh H, Singh R. Pathobiology of human RH strain induced experimental toxoplasmosis in murine model. J Parasit Dis 2016;40:840-4. https://doi.org/10.1007/s12639-014-0589-1
- Powell HC, Gibbs JrJr, Lorenzo AM, Lampert PW, Gajdusek DC. Toxoplasmosis of the central nervous system in the adult. Electron microscopic observations. Acta Neuropathol 1978;41:211-6. https://doi.org/10.1007/BF00690438
- Carruthers VB, Suzuki Y. Effects of Toxoplasma gondii infection on the brain. Schizophr Bull 2007;33:745-51. https://doi.org/10.1093/schbul/sbm008
- El Temsahy MM, El Kerdany ED, Eissa MM, Shalaby TI, Talaat IM, Mogahed NM. The effect of chitosan nanospheres on the immunogenicity of Toxoplasma lysate vaccine in mice. Parasit Dis 2016;40:611-26. https://doi.org/10.1007/s12639-014-0546-z
- Dubey JP. Toxoplasmosis of animals and humans. 2nd ed. Boca Raton: CRC Press; 2010.
- Yuan Y, Rangarajan P, Kan EM, Wu Y, Wu C, Ling EA. Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. J Neuroinflammation 2015;12:11. https://doi.org/10.1186/s12974-014-0226-z
- Henn A, Lund S, Hedtjarn M, Schrattenholz A, Porzgen P, Leist M. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX 2009;26:83-94.
- Mineo JR, Kasper LH. Attachment of Toxoplasma gondii to host cells involves major surface protein, SAG-1 (P30). Exp Parasitol 1994;79:11-20. https://doi.org/10.1006/expr.1994.1054
- Moroda M, Takamoto M, Iwakura Y, Nakayama J, Aosai F. Interleukin-17Adeficient mice are highly susceptible to Toxoplasma gondii infection due to excessively induced T. gondii HSP70 and interferon gamma production. Infect Immun 2017;85. e00399-17.
-
Alomar ML, Rasse-Suriani FA, Ganuza A, Coceres VM, Cabrerizo FM, Angel SO. In vitro evaluation of
${\beta}$ -carboline alkaloids as potential anti-Toxoplasma agents. BMC Res Notes 2013;6:193. https://doi.org/10.1186/1756-0500-6-193 - Harker KS, Ueno N, Lodoen MB. Toxoplasma gondii dissemination: a parasite's journey through the infected host. Parasite Immunol 2015;37:141-9. https://doi.org/10.1111/pim.12163
- Hwang YS, Shin JH, Yang JP, Jung BK, Lee SH, Shin EH. Characteristics of infection immunity regulated by Toxoplasma gondii to maintain chronic infection in the brain. Front Immunol 2018;9:158. https://doi.org/10.3389/fimmu.2018.00158
- Dellacasa-Lindberg I, Fuks JM, Arrighi RB, Lambert H, Wallin RP, Chambers B, Barragan A. Migratory activation of primary cortical microglia upon infection with Toxoplasma gondii. Infect Immun 2011;79:3046-52. https://doi.org/10.1128/IAI.01042-10
-
Lian LH, Jin Q, Song SZ, Wu YL, Bai T, Jiang S, Li Q, Yang N, Nan JX. Ginsenoside Rh2 downregulates LPS-induced NF-
${\kappa}B$ activation through inhibition of TAK1 phosphorylation in RAW 264.7 murine macrophage. Evid Based Complement Alternat Med 2013;2013:646728. - Denkers EY. Toll-like receptor initiated host defense against Toxoplasma gondii. J Biomed Biotechnol 2010;2010:737125. https://doi.org/10.1155/2010/737125
- Zhou YH, Wang SS, Yang J, Tao JP, Xu YL, Huang YZ, Gao Q. Expression of Tolllike receptor 4 in brain tissue of chronic Toxoplasma gondii infection rats and its effect on brain injury. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2012;24:58-61.
- Zare-Bidaki M, Hakimi H, Abdollahi SH, Zainodini N, Arababadi MK, Kennedy D. TLR4 in Toxoplasmosis; friends or foe? Microb Pathog 2014;69-70:28-32. https://doi.org/10.1016/j.micpath.2014.03.006
- Aosai F, Chen M, Kang HK, Mun HS, Norose K, Piao LX, Kobayashi M, Takeuchi O, Akira S, Yano A. Toxoplasma gondii-derived heat shock protein HSP70 functions as a B cell mitogen. Cell Stress Chaperones 2002;7:357-64. https://doi.org/10.1379/1466-1268(2002)007<0357:TGDHSP>2.0.CO;2
- Makino M, Uemura N, Moroda M, Kikumura A, Piao LX, Mohamed RM, Aosai F. Innate immunity in DNA vaccine with Toxoplasma gondii-heat shock protein 70 gene that induces DC activation and Th1 polarization. Vaccine 2011;29:1899-905. https://doi.org/10.1016/j.vaccine.2010.12.118
- Fang H, Aosai F, Mun HS, Norose K, Ahmed AK, Furuya M, Yano A. Anaphylactic reaction induced by Toxoplasma gondii-derived heat shock protein 70. Int Immunol 2006;18:1487-97. https://doi.org/10.1093/intimm/dxl081
- Fang H, Mun HS, Kikumura A, Sayama Y, Norose K, Yano A, Aosai F. Toxoplasma gondii-derived heat shock protein 70 induces lethal anaphylactic reaction through activation of cytosolic phospholipase A2 and platelet-activating factor via Toll-like receptor 4/myeloid differentiation factor 88. Microbiol Immunol 2008;52:366-74. https://doi.org/10.1111/j.1348-0421.2008.00047.x
- Molestina RE, Payne TM, Coppens I, Sinai AP. Activation of NF-kappaB by Toxoplasma gondii correlates with increased expression of antiapoptotic genes and localization of phosphorylated IkappaB to the parasitophorous vacuole membrane. J Cell Sci 2003;116:4359-71. https://doi.org/10.1242/jcs.00683
-
Wang S, Zhang Z, Wang Y, Gadahi JA, Xie Q, Xu L, Yan R, Song X, Li X. Toxoplasma gondii excretory/secretory antigens (TgESAs) suppress inflammatory cytokine secretion by inhibiting TLR-induced NF-
${\kappa}B$ activation in LPSstimulated murine macrophages. Oncotarget 2017;8:88351-9. https://doi.org/10.18632/oncotarget.19362 -
Guiton PS, Sagawa JM, Fritz HM, Boothroyd JC. An in vitro model of intestinal infection reveals a developmentally regulated transcriptome of Toxoplasma sporozoites and a NF-
${\kappa}B$ -like signature in infected host cells. PLoS One 2017;12:e0173018. https://doi.org/10.1371/journal.pone.0173018 - Glaser KC, Hagos B, Molestina RE. Effects of Toxoplasma gondii genotype and absence of host MAL/Myd88 on the temporal regulation of gene expression in infected microglia. Exp Parasitol 2011;129:409-13. https://doi.org/10.1016/j.exppara.2011.08.016
- Kim L, Butcher BA, Lee CW, Uematsu S, Akira S, Denkers EY. Toxoplasma gondii genotype determines MyD88-dependent signaling in infected macrophages. J Immunol 2006;177:2584-91. https://doi.org/10.4049/jimmunol.177.4.2584
- Lee CW, Sukhumavasi W, Denkers EY. Phosphoinositide-3-kinase-dependent, MyD88-independent induction of CC-type chemokines characterizes the macrophage response to Toxoplasma gondii strains with high virulence. Infect Immun 2007;75:5788-97. https://doi.org/10.1128/IAI.00821-07
-
Dobbin CA, Smith NC, Johnson AM. Heat shock protein 70 is a potential virulence factor in murine Toxoplasma infection via immunomodulation of host NF-
${\kappa}B$ and nitric oxide. J Immunol 2002;169:958-65. https://doi.org/10.4049/jimmunol.169.2.958 - Mun HS, Aosai F, Norose K, Piao LX, Fang H, Akira S, Yano A. Toll-like receptor 4 mediates tolerance in macrophages stimulated with Toxoplasma gondiiderived heat shock protein 70. Infect Immun 2005;73:4634-42. https://doi.org/10.1128/IAI.73.8.4634-4642.2005
Cited by
- Synthesis, Antibacterial and Antifungal Evaluation of Rhodanine Derivatives Bearing Quinoxalinyl Imidazole Moiety as ALK5 Inhibitors vol.41, pp.11, 2021, https://doi.org/10.6023/cjoc202106015
- Inhibitory Effect of Phellinus baumii Extract on CFA-Induced Inflammation in MH-S Cells through Nuclear Factor-κB and Mitogen-Activated Protein Kinase Signaling Pathways vol.2021, 2020, https://doi.org/10.1155/2021/5535630
- Synthesis and Antimicrobial Activity Evaluation of Imidazole‐Fused Imidazo[2,1‐ b ][1,3,4]thiadiazole Analogues vol.16, pp.15, 2020, https://doi.org/10.1002/cmdc.202100122
- New role of sertraline against Toxoplasma gondii‐induced depression‐like behaviours in mice vol.43, pp.12, 2020, https://doi.org/10.1111/pim.12893
- Chemotherapeutics for Toxoplasma gondii: Molecular Biotargets, Binding Modes, and Structure-Activity Relationship Investigations vol.64, pp.24, 2020, https://doi.org/10.1021/acs.jmedchem.1c01569
- Glycogen-based pH and redox sensitive nanoparticles with ginsenoside Rh2 for effective treatment of ulcerative colitis vol.280, 2020, https://doi.org/10.1016/j.biomaterials.2021.121077