DOI QR코드

DOI QR Code

Numerical Analysis of Debris Flow Using Drone Images and NFLOW

드론 영상 및 NFLOW를 활용한 토석류 수치해석 연구

  • Lee, Seungjoo (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lim, Hyuntaek (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lim, Moojae (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lee, Eungbeom (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lee, Kang-Il (Department of Civil Engineering, Daejin University) ;
  • Kim, Yongseong (Department of Regional Infrastructure Engineering, Kangwon National University)
  • Received : 2020.07.07
  • Accepted : 2020.08.10
  • Published : 2020.09.30

Abstract

In this study, numerical analysis of debris flow was performed using the SPH (Smoothed Particle Hydrodynamics) technique to analyze the mechanism of debris flow, and the applicability of soil parameters was verified by comparison with previous studies. In addition, after performing aerial photographic survey using a drone, a topographic model was created based on this survey to check the applicability of the site to the valley part of Jagul Mountain basin. And after numerical analysis of debris flow was performed using NFLOW, and the result was compared and analyzed with the existing satellite image based method. As a result of this study, the numerical analysis method using drone image and NFLOW was found to have a higher applicability to predicting the impact of debris flow, because it can reflect the actual topography better than the existing method based on satellite imagery. Therefore, it is considered that this study can be used as basic data to establish the preventive measures for debris flow such as location selection of the eruption control dam.

본 연구에서는 토석류 매커니즘 분석을 위해 SPH(Smoothed Particle Hydrodynamics) 기법을 사용하여 토석류 수치해석을 수행하고 선행연구와 비교하여 토질정수의 적용성을 검증하였다. 또한, 자굴산 유역 계곡부를 대상으로 드론을 이용하여 항공사진측량을 수행한 후 이를 기반으로 지형모델을 생성하고 NFLOW를 활용하여 토석류 수치해석을 수행한 후 결과값을 위성영상 기반의 기존의 방법과 비교·분석하였다. 본 연구 결과, 드론 영상 및 NFLOW를 활용한 수치해석 기법은 위성 영상기반의 기존 방법보다 실제 지형을 잘 반영할 수 있어 토석류 영향 예측에 적용성이 높은 것으로 나타났다. 따라서 드론영상 및 NFLOW를 활용한 토석류 분석 기법은 사방댐 위치선정 등 토석류 예방 대책 수립 시 기초자료로 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Kim, P. G. and Han, K. Y. (2017) "Numerical Modeling for the Detection of Debris Flow Using Detailed Soil Map and GIS", KOREAN SOCIETY OF CIVIL ENGINEERS, Vol.37, No.1, pp.43-59. (in Korean) https://doi.org/10.12652/Ksce.2017.37.1.0043
  2. Choi, S. K. and Kwon, T. H. (2017) "Effect of Barrier Location on Debris Flow Behaviors: A Numerical Study", J. Korean Soc. Hazard Mitig, Vol.17, No.6, pp.383-388. (in Korean) https://doi.org/10.9798/KOSHAM.2017.17.6.383
  3. Choi, J. R. (2018), "An Analysis of Debris-Flow Propagation Characteristics and Assessment of Building Hazard Mapping Using FLO-2D - The Case of Chuncheon Landslide Area", Crisisonomy, Vol.14, No.2, pp.91-99. (in Korean)
  4. Cascini, L., Cuomo, S., Pastor, M., Sorbino, G. and Piciullo, L. (2014), "SPH run-out modelling of channelised landslides of the flow type", Geomorphology, Vol.214, pp.502-513. https://doi.org/10.1016/j.geomorph.2014.02.031
  5. Curry, R. R. (1966), "Observation of alpine mudflows in the Tenmile Range, central Colorado", Geological Society of America Bulletin, Vol.77, No.7, pp.771-776. https://doi.org/10.1130/0016-7606(1966)77[771:OOAMIT]2.0.CO;2
  6. Gingold, R. A. and Monaghan, J. J. (1977), "Smoothed particle hydrodynamics: theory and application to non-spherical stars", Monthly notices of the royal astronomical society, Vol.181, No.3, pp-375-389. https://doi.org/10.1093/mnras/181.3.375
  7. Harlow, F. H. (1957), "Hydrodynamic problems involving large fluid distortions", Journal of the ACM (JACM), Vol.4, No.2, pp.137-142. https://doi.org/10.1145/320868.320871
  8. Harlow, F. H. (1962), "The particle-in-cell method for numerical solution of problems in fluid dynamics", Los Alamos Scientific Lab., N. Mex. No. LADC-5288.
  9. Iverson, R. M. (1997), "The physics of debris flows", Reviews of geophysics, Vol.35, No.3, pp.245-296. https://doi.org/10.1029/97RG00426
  10. Iverson, R. M., Logan, M., LaHusen, R. G. and Berti, M. (2010), "The perfect debris flow? Aggregated results from 28 large-scale experiments", Journal of Geophysical Research: Earth Surface, Vol.115, Is.F3.
  11. Lucy, L. B. (1977), "A numerical approach to the testing of the fission hypothesis", The astronomical journal, Vol.82, pp.1013-1024. https://doi.org/10.1086/112164
  12. Monaghan, J. J. (1985), "Particle methods for hydrodynamics", Computer Physics Reports Vol.3, No.2, pp.71-124. https://doi.org/10.1016/0167-7977(85)90010-3
  13. Pastor, M., Blanc, T., Haddad, B., Petrone, S., Morles, M. S., Drempetic, V., Issler, D., Crosta, G. B., Cascini, L., Sorbino, G. and Cuomo, S. (2014), "Application of a SPH depthintegrated model to landslide run-out analysis", Landslides, Vol.11, No.5, pp.793-812. https://doi.org/10.1007/s10346-014-0484-y
  14. Pierson, T. C. (1981), "Dominant particle support mechanisms in debris flows at Mt Thomas, New Zealand, and implications for flow mobility", Sedimentology, Vol.28, No.1, pp.49-60. https://doi.org/10.1111/j.1365-3091.1981.tb01662.x
  15. Zhang, S. (1993), "A comprehensive approach to the observation and prevention of debris flows in China", Natural Hazards, Vol.7, No.1, pp.1-23. https://doi.org/10.1007/BF00595676

Cited by

  1. 3D 제작과 정사영상 생성을 위한 UAV 최적 촬영 조건 연구 vol.38, pp.6, 2020, https://doi.org/10.7848/ksgpc.2020.38.6.645