DOI QR코드

DOI QR Code

공항 수하물 처리 시스템 이벤트 로그의 프로세스 관점 분석 방안 연구

A Process Perspective Event-log Analysis Method for Airport BHS (Baggage Handling System)

  • 박신념 (포항공과대학교 산업경영공학과) ;
  • 송민석 (포항공과대학교 산업경영공학과)
  • 투고 : 2020.08.05
  • 심사 : 2020.08.25
  • 발행 : 2020.08.30

초록

급증하는 항공 여객의 성장세에 맞춰 여객 터미널의 규모가 대형화됨에 따라 출발, 도착, 환승 여객들이 소지한 수하물을 최단 시간 내에 신속, 정확하게 처리할 수 있는 다양한 데이터 기술들이 접목된 첨단 수하물 처리시스템(Baggage Handling System; 이하 BHS)이 필수 요소가 되었다. 따라서 본 연구에서는 공항 수하물 처리시스템 운영의 고도화를 위해, 프로세스 관점의 데이터 분석 방법론을 통한 국내 공항의 수하물 처리능력 분석 방법을 소개하고, 이벤트 로그 기반 주요 지점의 정확한 부하예측 방법을 제시하여, 자원의 선제적 배치 및 flight-carrocel 스케줄링 최적화 문제 등 향후 첨단화된 BHS 운영 전략으로 이어질 수 있도록 한다. 분석에 사용된 데이터는 공공데이터 포털에서 얻을 수 있는 '전국 공항 수송실적', '항공기 운항 정보' API를 활용하였다. 국내 공항 BHS 시뮬레이션 모델에 해당 방법을 적용한 결과, 높은 수준의 예측성능을 확인 할 수 있었다.

As the size of the airport terminal grows in line with the rapid growth of aviation passengers, the advanced baggage handling system that combines various data technologies has become an essential element in order to handle the baggage carried by passengers swiftly and accurately. Therefore, this study introduces the method of analyzing the baggage handling capacity of domestic airports through the latest data analysis methodology from the process point of view to advance the operation of the airport BHS and the main points based on event log data. By presenting an accurate load prediction method, it can lead to advanced BHS operation strategies in the future, such as the preemptive arrangement of resources and optimization of flight-carrousel scheduling. The data used in the analysis utilized the APIs that can be obtained by searching for "Korea Airports Corporation" in the public data portal. As a result of applying the method to the domestic airport BHS simulation model, it was possible to confirm a high level of predictive performance.

키워드

참고문헌

  1. ACI World Airport Traffic Forecasts 2016-2040.
  2. 이재진, 국내선 공항 승객 및 수하물 처리 프로세스 개선 방안 연구, 한국항공대학교 학위논문(박사), 2012.
  3. SITA THE BAGGAGE REPORT, 2018.
  4. M Frey et al., "Column Generation for Outbound Baggage Handling at Airports", Transportation Science 51(4) 1031-1386, 2017. https://doi.org/10.1287/trsc.2015.0643
  5. 김종서, 수하물 처리 시스템(BHS)의 서비스 품질이 공공기관 조직성과에 미치는 영향, 한국항공대학교 학위논문(박사), 2019.
  6. Vadim Denisov et al., "Predictive Performance Monitoring of Material Handling Systems Using the Performance Spectrum", ICPM Proceedings, 2019.
  7. 도기영, 國內空港 수하물처리시스템의 問題點 및 改善方案 : K, G, J공항 출발 수하물처리시스템 중심으로, 중앙대학교 학위논문(석사), 2015.
  8. Zhang, Yongan, Ying Wang, and Long Wu. "Research on demand-driven leagile supply chain operation model: a simulation based on anylogic in system engineering." Systems Engineering Procedia 3 : 2 49-258, 2012. https://doi.org/10.1016/j.sepro.2011.11.027
  9. Van Der Aalst, Wil. "Process mining: Overview and opportunities." ACM Transactions on Management Information Systems (TMIS) 3.2 : 1-17, 2012. https://doi.org/10.1145/2229156.2229157
  10. Van Der Aalst, Wil, et al. "Process mining manifesto." International Conference on Business Process Management. Springer, Berlin, Heidelberg, 2011.
  11. Van Dongen, Boudewijn F., et al. "The ProM framework: A new era in process mining tool support." International conference on application and theory of petri nets. Springer, Berlin, Heidelberg, 2005.
  12. W. van der Aalst, T. Weijters and L. Maruster, "Workflow mining: discovering process models from event logs," in IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128-1142, Sept. 2004. https://doi.org/10.1109/TKDE.2004.47
  13. Vadim Denisov et al., "Unbiased, Fine-Grained Description of Processes Performance from Event Data", BPM Proceeding, 2018.
  14. Michie, Donald, David J. Spiegelhalter, and C. C. Taylor. "Machine learning." Neural and Statistical Classification 13.1994 : 1-298, 1994.
  15. Liaw, Andy, and Matthew Wiener. "Classification and regression by randomForest." R news 2.3: 18-22., 2002.
  16. Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016.
  17. Gardner, Matt W., and S. R. Dorling. "Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences." Atmospheric environment 32.14-15 : 2627-2636, 1998. https://doi.org/10.1016/S1352-2310(97)00447-0
  18. Tsaur et al. "The evaluation of airline service quality by fuzzy MCDM", Tourism Management 23(2):107-115, 2002. https://doi.org/10.1016/S0261-5177(01)00050-4
  19. W. van der Aalst, "Process Mining: Discovery, Conformance and Enhancement of Business Processes", Springer Verlag, Berlin (ISBN 978-3-642-19344-6).
  20. Zhang, Ting, Yuanxin Ouyang, and Yang He. "Traceable air baggage handling system based on RFID tags in the airport." Journal of Theoretical and Applied Electronic Commerce Research 3.1: 106-115, 2008. https://doi.org/10.3390/jtaer3010011