DOI QR코드

DOI QR Code

석고 존재 및 탄산칼슘 첨가에 따른 활성 슬래그의 역학적 성능 및 반응생성물

Mechanical Properties and Reaction Products of Activated Slag System Depending on Gypsum Presence and Calcium Carbonate Addition

  • 정연웅 (한국건설생활환경시험연구원 건설기술연구센터) ;
  • 임귀환 (한국건설생활환경시험연구원 건설기술연구센터) ;
  • 박수현 (한국건설생활환경시험연구원 건설기술연구센터) ;
  • 김주형 (한국건설생활환경시험연구원 건설기술연구센터) ;
  • 김태상 (한국건설생활환경시험연구원 건설기술연구센터)
  • 투고 : 2020.06.30
  • 심사 : 2020.07.23
  • 발행 : 2020.08.30

초록

본 연구는 석고의 존재 유무 및 탄산칼슘의 첨가에 따른 활성 슬래그 페이스트의 역학적 성능과 반응생성물을 연구한다. 활성 슬래그 페이스트의 자극제는 CaO 및 NaOH가 사용되었으며 자극제의 함량을 두 수준으로 결정하여 그 특성을 압축강도 실험과 방사광가속기 X-선 회절분석을 통해 조사하였다. CaO-활성 슬래그의 경우 석고가 존재하지 않는 경우 탄산칼슘의 첨가는 초기 수화를 촉진하는 충진효과만 발휘하는 것으로 나타났으며, 재령 28일에는 역학적 성능 향상을 보이지 않는 것으로 나타났다. 반면, 석고가 존재하는 경우 에트린자이트의 상안정성에 기여하며 높은 수준의 강도향상을 보였다. NaOH를 자극제로 사용하는 경우 석고가 존재하지 않는 경우 역학적 성능변화는 미비한 것으로 조사되었으나, 석고가 존재하는 경우 SO32- 이온과 CO32- 이온의 이온경쟁으로 반응생성물의 결정화도는 낮추며 역학적 성능을 저해하는 것으로 조사되었다.

This study investigates the mechanical properties and reaction products of activated slag pastes depending on gypsum presence and calcium carbonate addition in terms of compressive strength tests and synchrotron X-ray diffraction. The chemicals of CaO and NaOH are used as activators with different two dosages. The reaction of CaO-activated slag without gypsum just accelerated by addition of calcium carbonate at early ages, but no improvement was observed at later ages. On the other hand, the mechanical properties of CaO-activated slag pastes with gypsum were improved with calcium carbonate, enhancing the stability of ettringite. The variation of mechanical properties of NaOH-activated slag pastes was negligible depending on calcium carbonate addition in case of no gypsum. The addition of calcium carbonate into NaOH-activated slag pastes with gypsum deteriorated its mechanical properties due to the ion competition between CO32- ions and SO32- ions, decreasing crystallinity of reaction products.

키워드

참고문헌

  1. Balonis, M., Glasser, F. P. (2009), The Density of Cement Phases, Cement and Concrete Research, 39(9), 733-739. https://doi.org/10.1016/j.cemconres.2009.06.005
  2. Jeon, D., Jun, Y., Jeong, Y., Oh, J. E. (2015), Microstructural and Strength Improvements through the Use of Na2CO3 in a Cementless Ca(OH)2-activated Class F Fly Ash System, Cement and Concrete Research, 67, 215-225. https://doi.org/10.1016/j.cemconres.2014.10.001
  3. Jeong, Y., Oh, J. E., Jun, Y., Park, J., Ha, J.-H., Sohn, S. G. (2016a), Influence of Four Additional Activators on Hydrated-lime [Ca(OH)2] Activated Ground Granulated Blast-furnace Slag, Cement and Concrete Composites, 65, 1-10. https://doi.org/10.1016/j.cemconcomp.2015.10.007
  4. Jeong, Y., Park, H., Jun, Y., Jeong, J.-H., Oh, J. E. (2016b), Influence of Slag Characteristics on Strength Development and Reaction Products in a CaO-activated Slag System, Cement and Concrete Composites, 72, 155-167. https://doi.org/10.1016/j.cemconcomp.2016.06.005
  5. Jeong, Y., Yum, W. S., Moon, J. Oh, J. E. (2017a), Utilization of Precipitated CaCO3 from Carbon Sequestration of Industrially Emitted CO2 in Cementless CaO-activated Blast-furnace Slag Binder System, Journal of Cleaner Production, 166, 649-659. https://doi.org/10.1016/j.jclepro.2017.08.097
  6. Jeong, Y., Hargis, C. W., Chun, S., Moon, J. (2017b), Effect of Calcium Carbonate Fineness on Calcium Sulfoaluminate-Belite Cement, Materials, 10(8), 900. https://doi.org/10.3390/ma10080900
  7. Lothenbach, B., Le Saout, G., Gallucci, E., Scrivener, K. (2008), Influence of Limestone on the Hydration of Portland Cements, Cement and Concrete Research, 38(6), 858-860.
  8. Lu, P., Li, Q., Zhai, J. (2008), Mineralogical Characterizations and Reaction Path Modeling of the Pozzolanic Reaction of Fly Ash-Lime Systems, Journal of the American Ceramic Society, 91(3), 955-964. https://doi.org/10.1111/j.1551-2916.2007.02193.x
  9. Martin, L. H. J., Winnefeld, F., Müller, C. J., Lothenbach, B. (2015), Contribution of Limestone to the Hydration of Calcium Sulfoaluminate Cement, Cement and Concrete Composites, 62, 204-211. https://doi.org/10.1016/j.cemconcomp.2015.07.005
  10. Matschei, T., Lothenbach, B., Glasser, F. P. (2007), The Role of Calcium Carbonate in Cement Hydration, Cement and Concrete Research, 37(4), 551-558. https://doi.org/10.1016/j.cemconres.2006.10.013
  11. Myers, R. J., Bernal, S. A., Provis, J. L. (2017), Phase Diagrams for Alkali-activated Slag Binders, Cement and Concrete Research, 95, 30-38. https://doi.org/10.1016/j.cemconres.2017.02.006
  12. Oey, T., Kumar, A., Bullard, J. W., Neithalath, N., Sant, G. (2013), The Filler Effect: The Influence of Filler Content and Surface Area on Cementitious Reaction Rates, Journal of the American Ceramic Society, 96(6), 1978-1990. https://doi.org/10.1111/jace.12264
  13. Provis, J. L., Palomo, A., Shi, C. (2015), Advances in Understanding Alkali-activated Materials, Cement and Concrete Research, 78, 110-125. https://doi.org/10.1016/j.cemconres.2015.04.013
  14. Provis, J. L. (2018), Alkali-activated Materials, Cement and Concrete Research, 114, 40-48. https://doi.org/10.1016/j.cemconres.2017.02.009
  15. Snellings, R., Chwast, J., Cizer, O., De Belie, N., Dhandapani, Y., Durdzinski, P., Elsen, J., Haufe, J., Hooton, D., Patapy, C., Santhanam, M., Scrivener, K., Snoeck, D., Steger, L., Tongbo, S., Vollpracht, A., Winnefeld, F., Lothenbach, B., (2018), Report of TC 238-SCM: Hydration Stoppage Methods for Phase Assemblages Studies of Blended Cements-results of a Round Robin Test, Materials and Structures, 51, 111. https://doi.org/10.1617/s11527-018-1237-5
  16. Wang, S.-D., Scrivener, K. L., (1995), Hydration Products of Alkali Activated Slag Cement, Cement and Concrete Research, 25(3), 561-571. https://doi.org/10.1016/0008-8846(95)00045-E