References
- Aguera, F., Aguilar, F.J., and Aguilar M.A. (2008), Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouse, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 63, No. 6, pp. 635-646. https://doi.org/10.1016/j.isprsjprs.2008.03.003
- Aguilar, M.A., Vallario, A., Aguilar, F.J., Lorca A.G., and Parente C. (2015), Object-based greenhouse horticultural crop identification from multi-temporal satellite imagery: a case study in Almeria, Spain, Remote Sensing, Vol. 7, No. 6, pp. 7378-7401. https://doi.org/10.3390/rs70607378
- Carvajal, F., Crisanto, E., Aguilar, F.J., Aguera, F., and Aguilar, M.A. (2006), Greenhouse detection using artificial neural network with a very high resolution satellite image, ISPRS Technical Commission II Symposium, 12-14 July, Vienna, Austria, pp. 37-42.
- Choi, J., Byun, Y., Kim, Y., and Yu, K. (2006), Support vector machine classification of hyperspectral image using spectral similarity kernel, Journal of Korean Society for Geospatial Information System, Vol. 14, No. 4, pp. 71-77. (in Korean with English abstract)
- Garzelli, A. (2015), Pansharpening of multispectral images based on nonlocal parameter optimization, IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 4, pp. 2096-2107. https://doi.org/10.1109/TGRS.2014.2354471
- Kim, Y. and Choi, J. (2015), Evaluation of block-based sharpening algorithms for fusion of Hyperion and ALI imagery, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 1, pp. 63-70. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2015.33.1.63
- Koc-San, D. (2013), Evaluation of different classification techniques for the detection of glass and plastic greenhouses from Worldview-2 satellite imagery, Journal of Applied Remote Science, Vol. 7, No. 1, pp. 073553-1-073553-20. https://doi.org/10.1117/1.JRS.7.073553
- Lefebvre, A., Sannier, C., Corpetti, T. (2016), Monitoring urban areas with Sentinel-2A data: application to the update of the Copernicus high resolution layer imperviousness degree, Remote Sensing, Vol. 8, No. 7, pp. 606-626. https://doi.org/10.3390/rs8070606
- Mountrakis, G., Im J., and Ogole, C. (2011), Support vector machines in remote sensing: a review, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 66, No. 3, pp. 247-259. https://doi.org/10.1016/j.isprsjprs.2010.11.001
- Nemmaoui, A., Aguilar, M.A., Aguilar, F.J., Novelli, A., and Lorca, A.G. (2018), Greenhouse crop identification from multi-temporal multi-sensor satellite imagery using object-based approach: a case study from Almeria (Spain), Remote Sensing, Vol. 10, No. 11, pp. 1751-1775. https://doi.org/10.3390/rs10111751
- Park, H., Choi, J., Park, N., and Choi, S. (2017), Sharpening the VNIR and SWIR bands of Sentinel-2A imagery through modified selected and synthesized band schemes, Remote Sensing, Vol. 9, No. 10, pp. 1080-1099. https://doi.org/10.3390/rs9101080
- Rahmani, S., Strait, M., Merkurjev, D., Moeller, M., and, Wittman, T. (2010), An adaptive IHS pan-sharpening method. IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 4, pp. 746-750. https://doi.org/10.1109/LGRS.2010.2046715
- Selva, M., Aiazzi, B., Butera, F., Chiarantini, L., and Baronti, S. (2015), Hyper-sharpening: a first appoach on SIM-GA data, IEEE Journal of Selected Topics in Applied Earth Observation and Remote Sensing, Vol. 8, No. 6, pp. 3008-3024. https://doi.org/10.1109/JSTARS.2015.2440092