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1. Introduction

  A simplest method to estimate the 

effective moduli of composite materials is 

Voigt-Reuss bounds [1-2]. The Voigt 

bound indicates the upper bound and the 

Reuss bound is the lower bound. 

Generally these bounds are constructed 

for the eigenvalues of the elasticity tensor 

(or compliance tensor)  [3-7], but it is 

more reasonable to use the rule of 

mixture for the elasticity tensor (or 

compliance tensor) when the geometrical 

structure of porous materials is not simple 

and the principal axis of matrix is not 

coincident with that of water. 

 Mostly the eigenvalues are used for 

applying the rule of mixture, but the 

principal axis of matrix and water are not 

coincident. Thus the matrix is filled with 

water. It is much better to assume that 

the axis of solid matrix is coincident with 

that of water. Then we can conclude the 

rule of mixture in elasticity tensor (or 

compliance tensor) is more reasonable 

than that employed in eigenvalues or 

elastic modulus that is a scalar. 

The objective of this study is to estimate 

the fluid effect to solid biological tissues 

to find out the cell to cell signaling due 

to the fluid, especially for the solid 

matrix (or bone matrix) structure is very 

complicated for estimating with 

considering bone cells attached to the 

solid bone matrix. 

2. Method : Hill Inequality 

  Using the strain energy and Voigt-Reuss 

bounds [3-7], we can construct the 
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bounds for eigenvalues. First, the Hooke`s 

law is given by

                    (1)

where  is the elasticity tensor in three 

dimensions,   are the stress tensor, and  

 are the strain tensor. If we convert it 

for six dimensions [8,9], the equation (1) 

is written as

                       (2)

where   is the six dimensional elasticity 

tensor (or can be expressed as a matrix), 

  is the six dimensional stress vector, 

and   is the six dimensional strain 

vector. 

Note that the elasticity tensor (or matrix) 

  is the inverse of the compliance tensor 

(or matrix)  . The inverse of the Hooke`s 

law (eq. 1) is   . For eigenvalue 

problems, the eigenvalues of the matrix   

(or  ) should satisfy the following 

equations,

 or         (4)

Here the eigenvector   shows the 

orientation of the eigenvalue  . The 

strain energy   is obtained by multiplying 

the strain tensor to the stress tensor,

 

 
 

 
              (5)

By employing the principles of minimum 

potential energy and minimum 

complementary energy [4], the strain 

energy S  establishes the following 

inequalities,  

∙


∙ ≤ ∙

∙ and

∙


∙≤∙

∙

         (6)

Then the above inequalities must hold the 

inequalities for eigenvalues shown in (4),   

   ≤
 


≤




                  (7)

or

≤ ≤                          (8)

The equation (8) is the generalized Hill 

inequality for eigenvalues of elastic 

materials.

3. The Voigt and Reuss bounds for 

fully saturated porous material. 

  For anisotropic materials, we can simply 

consider the rule of mixture for 

components of elasticity tensor   because 

the tensor contains not only mechanical 

properties but also the orientation of 

each mechanical properties. For example, 

employing the rule of mixture for the 

elastic modulus E does not make the axis 

of two phase composites be coincident, 

but the rule of mixture employing to the 

elasticity tensor makes the axis of two 

phase composites be coincident. The 

expression for rule of mixture in two 

phase composite is given by




 .                   (9)

Then the bounds for Voigt and Reuss 

bounds are

  
  ≤


≤

     (10)

We can examine the results numerically 

for bone matrix, which is a composite of 

collagen and mineral crystals, containing 

bone fluid inside pores: The technical 

elastic constants of bone matrix are 

 ,   , , 

 ,  , , 

 ,  ,  , 

 ,   and   [10]. 
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The elasticity tensor for bone fluid is 

given by [11].

Fig. 1. The Voigt bound (blue) and Reuss 

bound (red) for c11 of elasticity tensor

Fig. 2. The Voigt bound (blue) and Reuss 

bound (red) for c12 of elasticity tensor

 











     

     
     
     
     
     

,(11)

where   is the bulk modulus of water. 

By employing the given mechanical 

properties, we construct the upper and 

lower bounds (eq. 10) with the bulk 

modulus of water   to be unknown. 

4. Discussion and Conclusion 

When the elasticity tensor of water is 

established, the water is assumed to be an 

incompressible elastic material. Water has 

a bulk modulus, which is the reciprocal 

of the compressibility. 

Figure 1 shows the bounds of   of 

the elasticity tensor and Figure 2 show 

the bounds of   of the elasticity tensor, 

which is off-diagonal component.   

satisfies the upper and lower bounds, but 

  violates the bounds when the bulk 

modulus of water   is high and the 

porosity is low because the assumption 

constructing the elasticity tensor of water 

is incompressible elastic material. Figures 

1 and 2 will give you a guidance to use 

how much bulk modulus and porosity are 

needed for satisfying the upper and lower 

bounds for fully saturated porous 

materials. 
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