DOI QR코드

DOI QR Code

Tailoring the properties of spray deposited V2O5 thin films using swift heavy ion beam irradiation

  • Rathika, R. (Department of Physics, TBML College) ;
  • Kovendhan, M. (Department of Nuclear Physics, University of Madras) ;
  • Joseph, D. Paul (Department of Physics, National Institute of Technology) ;
  • Pachaiappan, Rekha (Department of Physics, Adhiyaman Arts and Science College for Women) ;
  • Kumar, A. Sendil (Department of Physics, Koneru Lakshmaiah Education Foundation) ;
  • Vijayarangamuthu, K. (Center for Nanoscience and Technology, Pondicherry University) ;
  • Venkateswaran, C. (Department of Nuclear Physics, University of Madras) ;
  • Asokan, K. (Inter University Accelerator Centre, Aruna Asaf Ali Marg) ;
  • Jeyakumar, S. Johnson (Department of Physics, TBML College)
  • Received : 2019.11.20
  • Accepted : 2020.04.10
  • Published : 2020.11.25

Abstract

Swift heavy ion (SHI) beam irradiation can generate desirable defects in materials by transferring sufficient energy to the lattice that favours huge possibilities in tailoring of materials. The effect of Ag15+ ion irradiation with energy 200 MeV on spray deposited V2O5 thin films of thickness 253 nm is studied at various ion doses from 5 × 1011 to 1 × 1013 ions/㎠. The XRD results of pristine film confirmed orthorhombic structure of V2O5 and its average crystallite size was found to be 20 nm. The peak at 394 cm-1 in Raman spectra confirmed O-V-O bonding of V2O5, whereas 917 cm-1 arise because of distortion in stoichiometry by a loss of oxygen atoms. Raman peaks vanished completely above the ion fluence of 5 × 1012 ions/㎠. Optical studies by UV-Vis spectroscopy shows decrement in transmittance with an increase in ion fluence up to 5 × 1012 ions/㎠. The red shift is observed both in the direct and indirect band gaps until 5 × 1012 ions/㎠. The surface topography of the pristine film revealed sheath like structure with randomly distributed spherical nano-particles. The roughness of film decreased and the density of spherical nanoparticles increased upon irradiation. Irradiation improved the conductivity significantly for fluence 5 × 1011 ions/㎠ due to band gap reduction and grain growth.

Keywords

References

  1. S. Krishnakumar, C.S. Menon, Optical properties of vanadium dioxide and vanadium pentoxide thin films, Phys. Status Solidi 153 (1996) 439-444. https://doi.org/10.1002/pssa.2211530218
  2. K.C. Cheng, F.R. Chen, J.J. Kai, V2O5 nanowires as a functional material for electrochromic device, Sol. Energy Mater. Sol. Cells 90 (2006) 1156-1165. https://doi.org/10.1016/j.solmat.2005.07.006
  3. G.R. Mutta, S.R. Popuri, M. Maciejczyk, N. Robertson, M. Vasundhara, V2O5 as an inexpensive counter electrode for dye sensitized solar cells, Mater. Res. Express 3 (2016), 035501 (1-10). https://doi.org/10.1088/2053-1591/3/3/035501
  4. K.J. Patel, G.G. Bhatt, J.R. Ray, P. Suryavanshi, C.J. Panchal, All-inorganic solid-state electrochromic devices: a review, J. Solid State Electrochem. 21 (2017) 337-347. https://doi.org/10.1007/s10008-016-3408-z
  5. J.M. Lee, H.S. Hwang, W. Il Cho, B.W. Cho, K.Y. Kim, Effect of silver co-sputtering on amorphous V2O5thin-films for microbatteries, J. Power Sources 136 (2004) 122-131. https://doi.org/10.1016/j.jpowsour.2004.05.051
  6. D.L. Smith, B.A. Loomis, D.R. Diercks, VANADIUM-BASE alloys for fusion reactor applications - a review, J. Nucl. Mater. 135 (1985) 125-139. https://doi.org/10.1016/0022-3115(85)90070-4
  7. D. Steiner, The nuclear performance of vanadium as a structural material infusion reactor blankets, Nucl. Fusion 14 (1974) 33-44. https://doi.org/10.1088/0029-5515/14/1/006
  8. A. Mrigal, M. Addou, M.E. El Jouad, S. Khannyra, Electrochemical performance of the V2O5 and VO2 thin films synthesized by spray pyrolysis technique, J. Mater. Environ. Sci. 8 (2017) 3598-3605.
  9. C.E. Patil, N.L. Tarwal, P.S. Shinde, H.P. Deshmukh, P.S. Patil, Synthesis of electrochromic vanadium oxide by pulsed spray pyrolysis technique and its properties, J. Phys. D Appl. Phys. 42 (1-7) (2009), 025404. https://doi.org/10.1088/0022-3727/42/2/025404
  10. S. Beke, A review of the growth of V2O5 films from 1885 to 2010, Thin Solid Films 519 (2011) 1761-1771. https://doi.org/10.1016/j.tsf.2010.11.001
  11. M. Kovendhan, D.P. Joseph, E.S. Kumar, A. Sendilkumar, P. Manimuthu, S. Sambasivam, C. Venkateswaran, R. Mohan, Structural transition and blue emission in textured and highly transparent spray deposited Li doped WO 3 thin films, Appl. Surf. Sci. 257 (2011) 8127-8133. https://doi.org/10.1016/j.apsusc.2011.04.122
  12. D. Perednis, L.J. Gauckler, Thin Film Deposition Using Spray Pyrolysis, J. Electroceramics. 14 (2005) 103-104. https://doi.org/10.1007/s10832-005-0870-x
  13. M. Kovendhan, D.P. Joseph, P. Manimuthu, A. Sendilkumar, S.N. Karthick, S. Sambasivam, K. Vijayarangamuthu, Hee Je Kim, B. Chun, K. Asokan, C. Venkateswaran, R. Mohan, Prototype electrochromic device and dye sensitized solar cell using spray deposited undoped and 'Li' doped V2O5 thin film electrodes, Curr. Appl. Phys. 15 (2015) 622-631. https://doi.org/10.1016/j.cap.2015.02.022
  14. G.K. Mehta, Swift heavy ions in materials science-emerging possibilities, Vacuum 48 (1998) 957-959. https://doi.org/10.1016/S0042-207X(97)00102-4
  15. J.C. Liu, J. Li, J.W. Mayer, Temperature effect on ion-irradiation-induced grain growth in Cu thin films, J. Appl. Phys. 67 (1990) 2354-2358. https://doi.org/10.1063/1.345530
  16. I.P. Jain, G. Agarwal, Surface Science Reports Ion beam induced surface and interface engineering, Surf. Sci. Rep. 66 (2011) 77-172. https://doi.org/10.1016/j.surfrep.2010.11.001
  17. H. Hofsass, P. Ehrhardt, H.G. Gehrke, M. Brotzmann, U. Vetter, K. Zhang, J. Krauser, C. Trautmann, C. Ko, S. Ramanathan, Tuning the conductivity of vanadium dioxide films on silicon by swift heavy ion irradiation, AIP Adv. 1 (2011) 1-11.
  18. R. Mitdank, D. Habel, O. Gorke, M. Harth, H. Schubert, H. Winter, Ion beam analysis of a structural phase transition in porous TiO2/V2O5 ceramics with rough surfaces, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269 (2011) 345-352. https://doi.org/10.1016/j.nimb.2010.11.047
  19. C.G. Granqvist, Handbook of Inorganic Electrochromic Materials, second ed., Elsevier, Newyork, 2002.
  20. C.G. Granqvist, M.A. Arvizu, Bayrak Pehlivan, H.Y. Qu, R.T. Wen, G.A. Niklasson, Electrochromic materials and devices for energy efficiency and human comfort in buildings: a critical review, Electrochim. Acta 259 (2018) 1170-1182. https://doi.org/10.1016/j.electacta.2017.11.169
  21. S.I. Park, Y.J. Quan, S.H. Kim, H. Kim, S. Kim, D.M. Chun, C.S. Lee, M. Taya, W.S. Chu, S.H. Ahn, A review on fabrication processes for electrochromic devices, Int. J. Precis. Eng. Manuf. Green Technol. 3 (2016) 397-421. https://doi.org/10.1007/s40684-016-0049-8
  22. www.srim.org.
  23. M.M. Margoni, S. Mathuri, K. Ramamurthi, R.R. Babu, V. Ganesh, K. Sethuraman, Hydrothermally grown nano and microstructured V2O5 thin films for electrochromic application, Appl. Surf. Sci. 449 (2018) 193-202. https://doi.org/10.1016/j.apsusc.2018.01.288
  24. C. Julien, E. Haro-Poniatowski, M.A. Camacho-Lopez, L. Escobar-Alarcon, J. Jimenez-Jarquin, Growth of V2O5 thin films by pulsed laser deposition and their applications in lithium microbatteries, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 65 (1999) 170-176. https://doi.org/10.1016/S0921-5107(99)00187-7
  25. A. Kumar, P. Singh, N. Kulkarni, D. Kaur, Structural and optical studies of nanocrystalline V2O5 thin films, Thin Solid Films 516 (2008) 912-918. https://doi.org/10.1016/j.tsf.2007.04.165
  26. Y. Sun, X. Xiao, G. Xu, G. Dong, G. Chai, H. Zhang, P. Liu, H. Zhu, Y. Zhan, Anisotropic vanadium dioxide sculptured thin films with superior thermochromic properties, Sci. Rep. 3 (1-10) (2013) 2756. https://doi.org/10.1038/srep02756
  27. R. Rathika, M. Kovendhan, D.P. Joseph, A.S. Kumar, K. Vijayarangamuthu, C. Venkateswaran, K. Asokan, S. Johnson Jeyakumar, Effect of 200 MeV Ag 15 + ion beam irradiation at different fluences on WO 3 thin films, Nucl. Instrum. Methods Phys. Res. B. 439 (2019) 51-58. https://doi.org/10.1016/j.nimb.2018.10.036
  28. A. Solanki, J. Shrivastava, S. Upadhyay, V. Sharma, P. Sharma, P. Kumar, P. Kumar, K. Gaskell, V.R. Satsangi, R. Shrivastav, S. Dass, Irradiation-induced modifications and PEC response e A case study of SrTiO 3 thin films irradiated by 120 MeV Ag 9 D ions, Int. J. Hydrogen Energy 36 (2011) 5236-5245. https://doi.org/10.1016/j.ijhydene.2011.01.149
  29. P. Kumar, P. Sharma, A. Solanki, A. Tripathi, D. Deva, R. Shrivastav, S. Dass, V.R. Satsangi, Photoelectrochemical generation of hydrogen using 100 Mev Si 8 D ion irradiated electrodeposited iron oxide thin films, Int. J. Hydrogen Energy 37 (2012) 3626-3632. https://doi.org/10.1016/j.ijhydene.2011.05.041
  30. M. Beauvy, C. Dalmasso, C. Thiriet-dodane, Damages in Ceramics for Nuclear Waste Transmutation by Irradiation with Swift Heavy Ions, vol. 242, 2006, pp. 557-561.
  31. P.C. Srivastava, V. Ganesan, O.P. Sinha, Evidence of plastic flow and recrystallization phenomena in swift (- 100 MeV) Si7+ ion irradiated silicon, Nucl. Instrum. Methods Phys. Res., Sect. B 222 (2004) 491-496. https://doi.org/10.1016/j.nimb.2004.03.067
  32. N. Banu, B. Satpati, B.N. Dev, Fluence dependent oscillatory amorphization and recrystallization in ion irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 406 (2017) 689-696. https://doi.org/10.1016/j.nimb.2017.02.043
  33. F. Agullo-Lopez, G. Garcia, J. Olivares, Lattice preamorphization by ion irradiation: fluence dependence of the electronic stopping power threshold for amorphization, J. Appl. Phys. 97 (1-8) (2005), 093514. https://doi.org/10.1063/1.1896444
  34. J. Zhang, J. Lian, F. Namavar, J. Wang, H. Haider, K. Garvin, R.C. Ewing, Nanosized rutile (TiO2) thin film upon ion irradiation and thermal annealing, J. Phys. Chem. C 115 (2011) 22755-22760. https://doi.org/10.1021/jp2056283
  35. B.S. Acharya, B.B. Nayak, Microstructural studies of nanocrystalline thin films of V 2 O 5 -MoO 3 using X-ray diffraction , optical absorption and laser micro Raman spectroscopy 46 (2008) 866-875.
  36. Z. Popovic, V. Stergiou, Y. Raptis, M.J. Konstantinovic, M. Isobe, Y. Ueda, V.V. Moshchalkov, High-pressure Raman study of CaV 2 O 5, J. Phys. Condens. Matter 14 (2002) L583-L589. https://doi.org/10.1088/0953-8984/14/32/101
  37. V.S.R. Channu, R. Holze, B. Rambabu, R.R. Kalluru, Q.L. Williams, Reduction of V 4 + from V 5 + using polymer as a surfactant for electrochemical applications, Int. J. Electrochem. Sci. 5 (2010) 605-614.
  38. R.W. Vook, F. Witt, H. Films, Thermally induced strains in evaporated films, J. Appl. Phys. 36 (1965) 2169-2171. https://doi.org/10.1063/1.1714442
  39. A.V. Krasheninnikov, K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys. 107 (1-71) (2010), 071301. https://doi.org/10.1152/japplphysiol.00304.2009
  40. M.C. Ridgway, T. Bierschenk, R. Giulian, B. Afra, M.D. Rodriguez, L.L. Araujo, A.P. Byrne, N. Kirby, O.H. Pakarinen, F. Djurabekova, K. Nordlund, M. Schleberger, O. Osmani, N. Medvedev, B. Rethfeld, P. Kluth, Tracks and Voids in Amorphous Ge Induced by Swift Heavy-Ion Irradiation, Phys. Rev. Lett. 245502 (2013) 22-26.
  41. D.E. Alexander, G.S. Was, Thermal-spike treatment of ion-induced grain growth: theory and experimental comparison, Phys. Rev. B 47 (1993) 2983-2994. https://doi.org/10.1103/PhysRevB.47.2983
  42. K. Awazu, X. Wang, M. Fujimaki, T. Komatsubara, T. Ikeda, K. Awazu, X. Wang, M. Fujimaki, Structure of latent tracks in rutile single crystal of titanium dioxide induced by swift heavy ions Structure of latent tracks in rutile single crystal of titanium dioxide induced by swift heavy ions, J. Appl. Phys. 100 (1-6) (2006), 044308. https://doi.org/10.1063/1.2229432
  43. A.E. Volkov, Effects of relaxation of electronic excitations from swift heavy ions in amorphous targets heavy ions in amorphous targets, Nucl. Instrum. Methods Phys. Res. B. 193 (2002) 381-390. https://doi.org/10.1016/S0168-583X(02)00809-1
  44. R. Kumaravel, K. Ramamurthi, I. Sulania, K. Asokan, D. Kanjilal, D.K. Avasti, P.K. Kulria, Effect of swift heavy ion irradiation on structural , optical and electrical properties of spray deposited CdO thin films, Radiat. Phys. Chem. 80 (2011) 435-439. https://doi.org/10.1016/j.radphyschem.2010.09.013
  45. P. Sharma, R. Singhal, R. Vishnoi, R. Kaushik, M.K. Banerjee, D.K. Avasthi, V. Ganesan, Ion track diameter in fullerene C70 thin film using Raman active vibrational modes of C70 molecule Ion track diameter in fullerene C 70 thin fi lm using Raman active vibrational modes of C 70 molecule, Vaccum 123 (2016) 35-41. https://doi.org/10.1016/j.vacuum.2015.10.006
  46. R. Rathika, M. Kovendhan, D.P. Joseph, K. Asokan, C. Venkateswaran, S.J. Jeyakumar, Investigation of structural and electrical properties of pristine and 200 MeV Ag15+ ion irradiated 3 wt% 'Li' doped WO3 thin films, Indian J. Phys. (2019) 1-7.
  47. V. Chauhan, T. Gupta, P. Singh, P.D. Sahare, N. Koratkar, R. Kumar, Influence of 120 MeV S 9 + ion irradiation on structural , optical and morphological properties of zirconium oxide thin films deposited by RF sputtering, Phys. Lett. 383 (2019) 898-907. https://doi.org/10.1016/j.physleta.2018.12.013
  48. H. Thakur, S. Gautam, P. Thakur, K.K. Sharma, A.P. Singh, Y. Kumar, R. Kumar, K.H. Chae, On the optical properties of Ag +15 ion-beam-irradiated TiO 2 and SnO 2 thin films, J. Kor. Phys. Soc. 61 (2011) 1609-1614. https://doi.org/10.3938/jkps.61.1609
  49. R. Sivakumar, R. Sanjeeviraja, C. Jayachandran, M. Gopalakrishnan, S.N. Sarangi, D. Paramanik, T. Som, MeV N + -ion irradiation effects on ${\alpha}$ - MoO3 thin films, J. Appl. Phys. 101 (1-5) (2007), 034913. https://doi.org/10.1063/1.2437656
  50. V. Kumar, R.G. Sonkawade, Y. Ali, A.S. Dhaliwal, Study of chemical , optical and structural properties of 120 MeV Ni 11 + ions beam irradiated poly (ethylene terephthalate) film, Int. J. Appl. Eng. Res. 2 (2011) 419-430.
  51. Y.S. Chaudhary, S.A. Khan, R. Shrivastav, A study on 170 MeV Au 13 + irradiation induced modifications in structural and photoelectrochemical behavior of nanostructured CuO thin films, Nucl. Instrum. Methods Phys. Res. B. 225 (2004) 291-296. https://doi.org/10.1016/j.nimb.2004.04.165
  52. J. Melsheimer, D. Ziegler, Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline Tin dioxide, Thin Solid Films 129 (1985) 35-47. https://doi.org/10.1016/0040-6090(85)90092-6
  53. M. Kovendhan, D.P. Joseph, P. Manimuthu, S. Ganesan, S. Sambasivam, P. Maruthamuthu, S.A. Suthanthiraraj, C. Venkateswaran, R. Mohan, Spray deposited Nb2O5 thin film electrodes for fabrication of dye sensitized solar cells, Trans. Indian Inst. Met. 64 (2011) 185-188. https://doi.org/10.1007/s12666-011-0036-2
  54. E. Viswanathan, Y.S. Katharria, S. Selvakumar, A. Arulchakkaravarthi, D. Kanjilal, K. Sivaji, Investigations on the structural and optical properties of the swift heavy ion irradiated 6HSiC, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269 (2011) 1103-1107. https://doi.org/10.1016/j.nimb.2011.01.017
  55. R. Rathika, M. Kovendhan, D.P. Joseph, K. Vijayarangamuthu, A.S. Kumar, C. Venkateswaran, K. Asokan, S.J. Jeyakumar, 200 MeV Ag15+ ion beam irradiation induced modifications in spray deposited MoO3 thin films by fluence variation, Nucl. Eng. Technol. 51 (2019) 1983-1990. https://doi.org/10.1016/j.net.2019.06.004
  56. P. Sharma, M. Vashistha, I.P. Jain, S. Ganganagar, Optical properties of Ge 20 Se 80-X Bi X thin films, J. Optoelectron. Adv. Mater. 7 (2005) 2647-2654.
  57. S.J. Ikhmayies, R.N. Ahmad-Bitar, A study of the optical bandgap energy and Urbach tail of spray-deposited CdS:In thin films, J. Mater. Res. Technol. 2 (2013) 221-227. https://doi.org/10.1016/j.jmrt.2013.02.012
  58. K.A. Aly, A.M. Abd Elnaeim, M.A.M. Uosif, O. Abdel-Rahim, Optical properties of Ge-As-Te thin films, Phys. B Condens. Matter 406 (2011) 4227-4232. https://doi.org/10.1016/j.physb.2011.08.013
  59. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films, Superlattice. Microst. 89 (2016) 153-169. https://doi.org/10.1016/j.spmi.2015.10.044
  60. F.A. Mir, K.M. Batoo, Effect of Ni and Au ion irradiations on structural and optical properties of nanocrystalline Sb-doped SnO 2 thin films, Appl. Phys. A 122 (1-7) (2016) 418. https://doi.org/10.1007/s00339-016-9948-3
  61. H.S. Zhang, J.L. Endrino, A. Anders, Comparative surface and nano-tribological characteristics of nanocomposite diamond-like carbon thin films doped by silver, Appl. Surf. Sci. 255 (2008) 2551-2556. https://doi.org/10.1016/j.apsusc.2008.07.193
  62. D.S. Rana, D.K. Chaturvedi, J.K. Quamara, Nano/micro surface structural study of swift heavy ions irradiated PVDF Films by AFM, Optoelectron. Adv. Mater. - RAPID Commun. 3 (2009) 737-743.
  63. S.G. Mayr, R.S. Averback, Surface smoothing of rough amorphous films by irradiation-induced viscous flow, Phys. Rev. Lett. 87 (1-4) (2001) 196106. https://doi.org/10.1103/PhysRevLett.87.196106
  64. H. Thomas, S. Thomas, R. V Ramanujan, D.K. Avasthi, I.A.A. Omari, S. Al-harthi, M.R. Anantharaman, Nuclear Instruments and Methods in Physics Research B Swift heavy ion induced surface and microstructural evolution in metallic glass thin films, Nucl. Instrum. Methods Phys. Res. B. 287 (2012) 85-90. https://doi.org/10.1016/j.nimb.2012.05.039
  65. N.G. Deshpande, A.A. Sagade, S.D. Chavhan, J.C. Vyas, F. Singh, A.K. Tripathi, Structural damage studies in conducting indium-tin oxide (ITO) thin films induced by Au 8 + swift heavy ions (SHI) irradiation, Vacuum 82 (2008) 39-44. https://doi.org/10.1016/j.vacuum.2007.03.004
  66. K.M. Abhirami, P. Matheswaran, B. Gokul, R. Sathyamoorthy, K. Asokan, Swift heavy ion provoked structural , optical and electrical properties in SnO 2 thin films, Appl. Phys. A 111 (2013) 1175-1180. https://doi.org/10.1007/s00339-012-7337-0
  67. M. Jaiswal, D. Kanjilal, R. Kumar, Structural and optical studies of 100 MeV Au irradiated thin films of tin oxide, Nucl. Instrum. Methods Phys. Res. B. 314 (2013) 170-175. https://doi.org/10.1016/j.nimb.2013.05.053
  68. D. Kaoumi, A.T. Motta, R.C. Birtcher, A thermal spike model of grain growth under irradiation, J. Appl. Phys. 104 (1-13) (2008), 073525. https://doi.org/10.1063/1.2988142
  69. D. Mohanta, N.C. Mishra, A. Choudhury, SHI-induced grain growth and grain fragmentation effects in polymer-embedded CdS quantum dot systems, Mater. Lett. 58 (2004) 3694-3699. https://doi.org/10.1016/j.matlet.2004.06.061
  70. A. Berthelot, S. Hemon, F. Gourbilleau, C. Dufour, E. Dooryhee, E. Paumier, Nanometric size effects on irradiation of tin oxide powder, Nucl. Inst. Methods Phys. Res. B 146 (1998) 437-442. https://doi.org/10.1016/S0168-583X(98)00517-5
  71. S. Hemon, F. Gourbilleau, E. Paumier, E. Dooryhee, TEM study of irradiation effects on tin oxide nanopowder, Nucl. Instrum. Methods Phys. Res. B. 122 (1997) 526-529. https://doi.org/10.1016/S0168-583X(96)00580-0
  72. J.W. Orton, M. Powell, The Hall effect in polycrystalline and powdered semiconductors, Rep. Prog. Phys. 43 (1980) 1264-1307.
  73. P. Sharma, M. Vashistha, I.P. Jain, Electrical conductivity of ion irradiated Ge20Se80-xBix thin films, Radiat. Meas. 36 (2003) 663-666. https://doi.org/10.1016/S1350-4487(03)00221-X
  74. S.N. Singh, S. Kumari, B.K. Das, Electrical properties of polycrystalline silicon and zinc oxide semiconductors, Bull. Mater. Sci. 6 (1984) 243-258. https://doi.org/10.1007/BF02743900
  75. A. Mayadas, M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces, Phys. Rev. B 1 (1970) 1382-1389. https://doi.org/10.1103/PhysRevB.1.1382
  76. P.M.R. Kumar, C.S. Kartha, K.P. Vijayakumar, F. Singh, D.K. Avasthi, T. Abe, Y. Kashiwaba, G.S. Okram, M. Kumar, S. Kumar, Modifications of ZnO thin films under dense electronic excitation, J. Appl. Phys. 97 (2005), 013509 (1-6). https://doi.org/10.1063/1.1823574

Cited by

  1. A Review of Nanostructured Resistive-Based Vanadium Oxide Gas Sensors vol.8, pp.4, 2020, https://doi.org/10.3390/chemosensors8040105
  2. Influence of irradiation with heavy Kr15+ ions on the structural, optical and strength properties of BeO ceramic vol.32, pp.11, 2021, https://doi.org/10.1007/s10854-021-06087-y
  3. The impact of fluence dependent 120 MeV Ag swift heavy ion irradiation on the changes in structural, electronic, and optical properties of AgInSe2 nano-crystalline thin films for optoelectr vol.11, pp.42, 2020, https://doi.org/10.1039/d1ra03409j