DOI QR코드

DOI QR Code

Pressure drop in packed beds with horizontally or vertically stratified structure

  • Li, Liangxing (State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) ;
  • Xie, Wei (State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) ;
  • Zhang, Zhengzheng (State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University) ;
  • Zhang, Shuanglei (State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University)
  • 투고 : 2019.11.26
  • 심사 : 2020.05.04
  • 발행 : 2020.11.25

초록

The paper concentrates on an experimental study of the pressure drop in double-layered packed beds formed by glass spheres, having the configuration of horizontal and vertical stratification. Both single-phase and two-phase flow tests are performed. The pressure drop during the test is recorded and the measured data are compared with those of homogeneous beds consisting of mono-size particles. The results show that for the horizontally stratified bed with fine particles atop coarse particles, the pressure drop in top layer is found higher than those of homogenous bed consisting of the same smaller size particles, while the measured pressure drop of bottom part is similar with those of similar homogenous bed. But for the homologous bed with upside-down structure, the stratification has little or no effect on the pressure drop of the horizontally stratified bed, and the pressure drop of each layer is almost same as that of homogeneous bed packed with corresponding spheres. Additionally, in vertically stratified bed, the pressure drops on the left and right side is almost equal and between those in homogeneous beds. It is speculated that vertically stratified structure may lead to lateral flow which redistributes the flow rate in different parts of packed bed.

키워드

참고문헌

  1. S. Cheng, P. Gong, S. Wang, J. Cui, Y. Qian, T. Zhang, G. Jiang, Investigation of flow regime in debris bed formation behavior with nonspherical particles, Nucl. Eng. Technol. 50 (2018) 43-53, https://doi.org/10.1016/j.net.2017.09.003.
  2. C. Linde, K.G. Andersson, S.M. Magnusson, F. Physant, Nordic research and development cooperation to strengthen nuclear reactor safety after the Fukushima accident, Nucl. Eng. Technol. 51 (2019) 647-653, https://doi.org/10.1016/j.net.2018.11.013.
  3. E. Kim, W.H. Jung, J.H. Park, H.S. Park, K. Moriyama, Experiments on sedimentation of particles in a water pool with gas inflow, Nucl. Eng. Technol. 48 (2016) 457-469, https://doi.org/10.1016/j.net.2015.12.007.
  4. Y.B. Lu, G.H. Tang, Experimental Investigation of Fluid through Porous Media Packed with Single-Diameter and Multi-Diameter Spheres, Transport Porous Media vol. 110 (2015) 449-459, https://doi.org/10.1007/s11242-015-0566-x.
  5. N. Chikhi, R. Clavier, J.P. Laurent, F. Fichot, M. Quintard, Pressure drop and average void fraction measurements for two-phase flow through highly permeable porous media, Ann. Nucl. Energy 94 (2016) 422-432, https://doi.org/10.1016/j.anucene.2016.04.007.
  6. L. Li, X. Zou, H. Wang, S. Zhang, K. Wang, Investigations on two-phase flow resistances and its model modifications in a packed bed, Int. J. Multiphas. Flow 101 (2018) 24-34, https://doi.org/10.1016/j.ijmultiphaseflow.2017.12.012.
  7. Y.S. Choi, S.J. Kim, D. Kim, A semi-empirical correlation for pressure drop in packed beds of spherical particles, Transp. Porous Media 75 (2008) 133-149, https://doi.org/10.1007/s11242-008-9215-y.
  8. R. Chen, M. Tian, S. Chen, W. Tian, G.H. Su, S. Qiu, Three dimensional thermal hydraulic characteristic analysis of reactor core based on porous media method, Ann. Nucl. Energy 104 (2017) 178-190. https://doi.org/10.1016/j.anucene.2017.02.020
  9. R. Chen, L. Chen, K. Guo, A. Yamaji, M. Furuya, W. Tian, G.H. Su, S. Qiu, Numerical analysis of the melt behavior in a fuel support piece of the BWR by MPS, Ann. Nucl. Energy 102 (2017) 422-439. https://doi.org/10.1016/j.anucene.2017.01.007
  10. R. Chen, Y. Oka, G. Li, T. Matsuura, Numerical investigation on melt freezing behavior in a tube by MPS method, Nucl. Eng. Des. 273 (2014) 440-448. https://doi.org/10.1016/j.nucengdes.2014.03.049
  11. M.J. Konovalikhin, Investigations on Melt Spreading and Coolability in a LWR Severe Accident, Royal Institute of Technology, Stockholm, Sweden, 2001.
  12. D. Nemec, J. Levec, Flow through packed bed reactors: 1. Single-phase flow, Chem. Eng. Sci. 60 (2005) 6947-6957, https://doi.org/10.1016/j.ces.2005.05.068.
  13. I. Lindholm, S. Holmstrom, J. Miettinen, V. Lestinen, J. Hyvarinen, P. Pankakoski, H. Sjovall, Dryout heat flux experiments with deep heterogeneous particle bed, Nucl. Eng. Des. 236 (2006) 2060-2074, https://doi.org/10.1016/j.nucengdes.2006.03.036.
  14. W. Schmidt, Interfacial drag of two-phase flow in porous media, Int. J. Multiphas. Flow 33 (2007) 638-657, https://doi.org/10.1016/j.ijmultiphaseflow.2006.09.006.
  15. N. Kaur, R. Singh, R.K. Wanchoo, Flow of Newtonian and Non-newtonian Fluids through Packed Beds: an Experimental Study, vol. 90, Transp. Porous Media, 2011, pp. 655-671, https://doi.org/10.1007/s11242-011-9808-8.
  16. E. Takasuo, S. Holmstrom, T. Kinnunen, P.H. Pankakoski, The COOLOCE experiments investigating the dryout power in debris beds of heap-like and cylindrical geometries, Nucl. Eng. Des. 250 (2012) 687-700, https://doi.org/10.1016/j.nucengdes.2012.06.015.
  17. E. Takasuo, An experimental study of the coolability of debris beds with geometry variations, Ann. Nucl. Energy 92 (2016) 251-261, https://doi.org/10.1016/j.anucene.2016.01.030.
  18. R. Clavier, N. Chikhi, F. Fichot, M. Quintard, Experimental investigation on single-phase pressure losses in nuclear debris beds: identification of flow regimes and effective diameter, Nucl. Eng. Des. 292 (2015) 222-236, https://doi.org/10.1016/j.nucengdes.2015.07.003.
  19. L. Li, X. Zou, J. Lou, H. Li, X. Lei, Pressure drops of single/two-phase flows through porous beds with multi-sizes spheres and sands particles, Ann. Nucl. Energy 85 (2015) 290-295, https://doi.org/10.1016/j.anucene.2015.05.025.
  20. L. Li, L. Kong, X. Zou, H. Wang, Pressure losses and interfacial drag for two-phase flow in porous beds with coarse particles, Ann. Nucl. Energy 101 (2017) 481-488, https://doi.org/10.1016/j.anucene.2016.12.002.
  21. L. Li, H. Wang, X. Zou, L. Kong, Flow resistances characteristics in a particulate bed with the configurations of uniform mixture and stratification, Ann. Nucl. Energy 112 (2018) 62-70, https://doi.org/10.1016/j.anucene.2017.09.031.
  22. R. Otomo, S. Harada, Fluid Permeability in Stratified Unconsolidated Particulate Bed, vol. 96, Transp. Porous Media, 2013, pp. 439-456, https://doi.org/10.1007/s11242-012-0098-6.
  23. A. Swaidan, F. Fichot, M. Quintard, Two phase flow redistribution in a two-layered porous medium with contrasting permeability. Ichmt Int Symposium on Advances in Computational Heat Transfer, 2017, https://doi.org/10.1615/ICHMT.2017.CHT-7.460.
  24. H. Bertin, M. Quintard, Two-phase flow in heterogeneous porous media III: laboratory experiments for flow parallel to a stratified system, Transport Porous Media 5 (1990) 543-590, https://doi.org/10.1615/ICHMT.2017.CHT-7.460.
  25. J. Berger, S. Guernouti, M. Woloszyn, Evaluating model reduction methods for heat and mass transfer in porous materials: proper orthogonal decomposition and proper generalized decomposition, J. Porous Media 22 (2019) 363-385, https://doi.org/10.1615/jpormedia.2019029049.
  26. J.H. Park, J.N. Kim, S.H. Cho, J.D. Kim, R.T. Yang, Adsorber dynamics and optimal design of layered beds for multicomponent gas adsorption, Chem. Eng. Sci. 53 (1998) 3951-3963, https://doi.org/10.1016/S0009-2509(98)00196-1.
  27. M.A. Buzanowski, S.U. Rege, K. Qian, Air-prepurification by pressure swing adsorption using single/layered beds, Chem. Eng. Sci. 56 (2001) 2745-2759, https://doi.org/10.1016/S0009-2509(00)00531-5.
  28. S. Ahn, Y.W. You, D.G. Lee, K.H. Kim, M. Oh, C.H. Lee, Layered two- and four-bed PSA processes for H2 recovery from coal gas, Chem. Eng. Sci. 68 (2012) 413-423, https://doi.org/10.1016/j.ces.2011.09.053.
  29. A. Karbojian, W.M. Ma, P. Kudinov, T.N. Dinh, A scoping study of debris bed formation in the DEFOR test facility, Nucl. Eng. Des. 239 (2009) 1653-1659, https://doi.org/10.1016/j.nucengdes.2009.03.002.
  30. D. Magallon, Characteristics of corium debris bed generated in large-scale fuel-coolant interaction experiments, Nucl. Eng. Des. 236 (2006) 1998, https://doi.org/10.1016/j.nucengdes.2006.03.038. -2009.
  31. D.A. Nield, A.V. Kuznetsov, A. Barletta, M. Celli, The onset of convection in a sloping layered porous medium: effects of local thermal non-equilibrium and heterogeneity, Transp. Porous Media 114 (2016) 87-97, https://doi.org/10.1007/s11242-016-0728-5.
  32. M. Winterberg, E. Tsotsas, Correlations for effective heat transport coefficients in beds packed with cylindrical particles, Chem. Eng. Sci. 55 (2000) 5937-5943, https://doi.org/10.1016/S0009-2509(00)00198-6.
  33. N. Zobel, T. Eppinger, F. Behrendt, M. Kraume, Influence of the wall structure on the void fraction distribution in packed beds, Chem. Eng. Sci. 71 (2012) 212-219, https://doi.org/10.1016/j.ces.2011.12.029.
  34. A. Koekemoer, A. Luckos, Effect of material type and particle size distribution on pressure drop in packed beds of large particles: extending the Ergun equation, Fuel 158 (2015) 232-238, https://doi.org/10.1016/j.fuel.2015.05.036.
  35. E. Erdim, O. Akgiray, I. Demir, A revisit of pressure drop-flow rate correlations for packed beds of spheres, Powder Technol. 283 (2015) 488-504, https://doi.org/10.1016/j.powtec.2015.06.017.
  36. F. Flow, T. Packed, Chemical Engineering Progres 48 (1952) 89-94.
  37. A. Khan, A. Busigin, C.R. Phillips, An optimized scheme for measurement of the concentrations of the decay products of radon and thoron, Health Phys. 42 (1982) 809-826, https://doi.org/10.1097/00004032-198206000-00006.
  38. R.J. Lipinski, A coolability model for post accident nuclear reactor debris, Nucl. Technol. 65 (1984) 53-66, https://doi.org/10.13182/NT84-A33373.
  39. A.W. Reed, The Effect of Channeling on the Dryout of Heated Particulate Beds Immersed in a Liquid Pool, PhD, Massachusetts Institute of Technology (MIT), USA, 1982.
  40. N.K. Tutu, T. Ginsberg, J.C. Chen, Interfacial drag for two-phase flow through high-permeability porous beds 1 (1983), 0-5.
  41. T. Schulenberg, U. Muller, An improved model for two-phase flow through beds of coarse particles, Int. J. Multiphas. Flow 13 (1987) 87-97, https://doi.org/10.1016/0301-9322(87)90009-7.
  42. V.X. Tung, V.K. Dhir, A hydrodynamic model for two-phase flow through porous media, Int. J. Multiphas. Flow 14 (1988) 47-65, https://doi.org/10.1016/0301-9322(88)90033-X.
  43. K. Hu, T.G. Theofanous, On the measurement and mechanism of dryout in volumetrically heated coarse particle beds, Int. J. Multiphas. Flow 17 (1991) 519-532, https://doi.org/10.1016/0301-9322(91)90047-7.
  44. M. Taherzadeh, M.S. Saidi, Modeling of two-phase flow in porous media with heat generation, Int. J. Multiphas. Flow 69 (2015) 115-127, https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.013.
  45. R. Clavier, N. Chikhi, F. Fichot, M. Quintard, Modeling of inertial multi-phase flows through high permeability porous media: friction closure laws, Int. J. Multiphas. Flow 91 (2017) 243-261, https://doi.org/10.1016/j.ijmultiphaseflow.2017.02.003.
  46. L. Li, W. Xie, W. Wang, X. Lei, H. Li, Experimental and numerical studies on the flow characteristics in a two-layer porous bed packed with different size particles, 10th International Conference on Multiphase Flow, ICMF 2019, Rio de Janeiro, Brazil, May 19-24, 2019.