DOI QR코드

DOI QR Code

Use of similarity indexes to identify spatial correlations of sodium void reactivity coefficients

  • Received : 2020.03.17
  • Accepted : 2020.04.22
  • Published : 2020.11.25

Abstract

The safety level of Sodium Fast Reactors is directly related with the sodium void reactivity. A low-void effect design has been proposed within the Horizon2020 ESFR-SMART project thanks to the introduction of a sodium plenum above the active core. In order to assess the impact of this core conception on transient analysis, a map with the spatial distribution of sodium void worth can be computed and fed into a point-kinetics-based transient code. Due to the spatial correlations between neighboring zones, the global effect of voiding two different axial or radial regions is not necessarily the sum of both individual contributions. Neglecting those correlations in the void worth map and consequently in the transient analysis may lead to an unrealistic prediction of the transient sequences. In this work, a method based on sensitivity analysis and similarity assessment is proposed for predicting those correlations. The method proved to be able to establish correlations between axial slices of a sub-assembly and was checked against realistic sodium void propagation patterns.

Keywords

References

  1. K. Mikityuk, E. Girardi, J. Krepel, E. Bubelis, E. Fridman, A. Rineiski, N. Girault, F. Payot, L. Bulingis, G. Gerbeth, N. Chauvin, C. Latge, J.-C. Garnier, ESFR-SMART: new Horizon-2020 project on SFR safety, in: Int. Conf. On Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development, 2017. Yekaterinburg, Russia.
  2. A. Lazaro, M. Schikorr, K. Mikityuk, L. Ammirabile, G. Bandini, G. Darmet, D. Schmitt, P. Dufour, A. Tosello, E. Gallego, G. Jimenez, E. Bubelis, A. Ponomarev, R. Kruessmann, D. Struwe, M. Stempniewicz, Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: optimised core and representative transient analysis, Nucl. Eng. Des. 277 (2014) 265-276. https://doi.org/10.1016/j.nucengdes.2014.02.029.
  3. F. Varaine, P. Marsault, M. Chenaud, B. Bernardin, A. Conti, P. Sciora, C. Venard, B. Fontaine, N. Devictor, L. Martin, A.-C. Scholer, D. Verrier, Pre-conceptual design study of ASTRID core, in: International Congress on Advances in Nuclear Power Plants, 2012. Chicago, USA.
  4. J. Guidez, J. Bodi, K. Mikityuk, A. Rineiski, E. Girardi, New safety measures proposed for European sodium fast reactor in horizon-2020 ESFR-SMART project, in: Generation-IV International Forum Symposium, France, Paris, 2018.
  5. J. Krepel, S. Pelloni, S. Bortot, A.-L. Panadero, K. Mikityuk, Mapping of sodium void worth and Doppler effect for sodium-cooled fast reactor, in: International Congress on Advances in Nuclear Power Plants, Nice, France, 2015.
  6. T. Takeda, K. Fujimura, K. Fujimata, S. Takeda, Effect of void propagation to sodium void reactivity transient analyses of fast reactors with sodium-plenum, Ann. Nucl. Energy 119 (2018) 175-179. https://doi.org/10.1016/j.anucene.2006.09.010.
  7. B. Rearden, M. Jesse, SCALE Code System, 2016. Version 6.2.
  8. B. Rearden, Perturbation theory eigenvalue sensitivity analysis with Monte Carlo techniques, Nucl. Sci. Eng. 146 (2004) 367-382. https://doi.org/10.13182/NSE03-03.
  9. N. Garcia-Herranz, A.-L. Panadero, A. Martinez, S. Pelloni, K. Mikityuk, A. Pautz, Nuclear data sensitivity and uncertainty assessment of sodium voiding reactivity coefficients of an ASTRID-like sodium fast reactor, EPJ Web Conf. 146 (2017), 09006. https://doi.org/10.1051/epjconf/201714609006.
  10. P. Romojaro, F. Alvarez-Velarde, I. Kodeli, A. Stankovskiy, C. Diez, O. Cabellos, N. Garcia-Herranz, J. Heyse, P. Schillebeeckx, G. Van den Eynde, G. Zerovnik, Nuclear data sensitivity and uncertainty analysis of effective neutron multiplication factor in various MYRRHA core configurations, Ann. Nucl. Energy 101 (2017) 330-338. https://doi.org/10.1016/j.anucene.2016.11.027.
  11. C. Perfetti, B. Rearden, W. Martin, SCALE continuous-energy eigenvalue sensitivity coefficient calculations, Nucl. Sci. Eng. 182 (2016) 332-353. https://doi.org/10.13182/NSE15-12.
  12. B. Kiedrowski, F. Brown, P. Wilson, Adjoint-weighted tallies for k-eigenvalue calculations with continuous-energy Monte Carlo, Nucl. Sci. Technol. 168 (3) (2011) 226-241. https://doi.org/10.13182/NSE10-22.
  13. B. Rearden, M. Jesse, TSUNAMI Utility Modules, 2011. ORNL/TM-2005/39 Version 6.1 Sect. M18.
  14. B. Broadhead, B. Rearden, C. Hopper, J. Wagschal, C. Parks, Sensitivity- and uncertainty-based criticality safety validation techniques, Nucl. Sci. Eng. 146 (2004) 340-366. https://doi.org/10.13182/NSE03-2.
  15. S. Golouglu, C. Hopper, B. Rearden, Extended interpretation of sensitivity data for benchmark areas of applicability, Trans. Am. Nucl. Soc. 88 (2003) 77-79.
  16. A. Rineiski, C. Meriot, M. Marchetti, J. Krepel, in: Cancun PHYSOR (Ed.), Core Safety Measures in ESFR-SMART, 2018. Mexico.
  17. E. Fridman, F. Alvarez-Velarde, P. Romojaro, H. Tsige-Tamirat, A. Jimenez-Carrascosa, N. Garcia-Herranz, F. Bernard, R. Gregg, J. Krepel, S. Massara, S. Poumerouly, E. Girardi, K. Mikityuk, Initial Core Performance and Burnup Calculations, Deliverable 1.2.1 of H2020 ESFR-SMART project, 2019.
  18. JEFF-3.1 evaluated data library - neutron data, OECD/NEA Data Bank, March 2016. [Online]. Available, https://www.oecd-nea.org/dbforms/data/eva/evatapes/jeff_31/.
  19. M. Aufiero, M. Martin, M. Fratoni, E. Fridman, S. Lorenzi, Analysis of the coolant density reactivity coefficient in LFRs and SFRs via Monte Carlo perturbation/sensitivity, in: PHYSOR, Sun Valley, 2016. USA.

Cited by

  1. Evaluation of the ESFR End of Equilibrium Cycle State: Spatial Distributions of Reactivity Coefficients vol.8, pp.1, 2020, https://doi.org/10.1115/1.4052121