DOI QR코드

DOI QR Code

경골 파혈산동탕(破血散疼湯)이 골절 생쥐의 골 유합에 미치는 영향

Effect of Pahyeolsandong-tang (Poxiesanteng-tang) in Tibia Fracture-induced Mice

  • 신우석 (상지대학교 대학원) ;
  • ;
  • 차윤엽 (상지대학교 부속 한방병원 한방재활의학과)
  • Shin, Woo-Suk (Sangji University Graduate School) ;
  • Parichuk, Kira (Department of Pharmacology, College of Korean Medicine, Sangji University) ;
  • Cha, Yun-Yeop (Department of Korean Rehabilitation Medicine, Sangji University Korean Medicine Hospital)
  • 투고 : 2020.09.17
  • 심사 : 2020.10.13
  • 발행 : 2020.10.31

초록

Objectives The main purpose of this study was to evaluate the bone healing effect of Pahyeolsandong-tang (PHT)(Poxiesanteng-tang) extract in tibia fracture-induced mice. Methods PHT was extracted using a solution of 35% ethanol in 60℃ for 8 hours. Mice were randomly divided into 4 groups (normal, control, PHT 50 and PHT 100). Mice of experimental groups were medicated with PHT 50 or 100 mg/kg for 7 to 21 days. To clarify the effect of bone fracture healing, relative messenger RNA (mRNA) expressions of osteocalcin (OCN), runt-related transcription factor 2 (Runx2), osterix (OSX), Sox9, collagen type II alpha 1 chain (Col2a1), receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) were examined. Results In in vitro experiment, relative mRNA expression of OCN, Runx2, Col2a1 was significantly increased in PHT treated group to compare with control differentiation group. In in vivo experiment, relative mRNA expression of OCN, Runx2, OSX, Sox9, Col2a1, RANKL, OPG was significantly increased in PHT treated group. Conclusions This study showed that PHT accelerates bone fracture healing through the activation of osteoclasts and osteoblasts. It was showed that PHT significantly promotes osteoblasts differentiation by osteoblast differentiation markers such as OCN, Runx2, Col1a2. Also it was investigated that PHT had stimulatory effect on osteoblasts function through enhancing OCN, Runx2, OSX, Sox9, Col2a1 and, osteoclasts function through enhancing RANKL and OPG markers. PHT effectively promotes bone fracture healing process through activation of osteoblasts and osteoclasts.

키워드

참고문헌

  1. The Society of Korean Medicine Rehabilitation. Korean rehabilitation medicine. 4th ed. Paju:Koonja Publishing. 2015:206-10.
  2. The Korean Orthopaedic Association. Orthopaedics. 7th ed. Seoul:ChoiSin medical Publishing Co. 2013:87, 94-5, 1161-2, 1385-94.
  3. Ji SY. Bibliographic study on method of treating the diseases inside the body applied to fracture. J Korean Med Ophthalmol Otolaryngol Dermatol. 1995;8(1);113-29.
  4. Wang D. Oedaebiyo. 1st ed. Seoul:Sungbosa. 1975: 749-50.
  5. Heo Joon. Donguibogam. 1st ed. Seoul:Bubin Publishing Co. 2012:785, 1575, 1582.
  6. Jo G. Seongjechongrok. 1st ed. Seoul:Yeogang Publishing Co. 1987:460-4.
  7. Jin H, Wang B, Li J, Xie W, Mao Q, Li S, Dong F, Sun Y, Ke HZ, Babij P, Tong P, Chen D. Anti-DKK1 antibody promotes bone fracture healing through activation of $\beta$-catenin signaling. Bone. 2015;71(1):63-75. https://doi.org/10.1016/j.bone.2014.07.039
  8. Sharma N, Arora S, Madan J. Nefopam hydrochloride loaded microspheres for post-operative pain management: synthesis, physicochemical characterization and in-vivo evaluation. Artif Cells Nanomed Biotechnol. 2018;46:138-46. https://doi.org/10.1080/21691401.2017.1301459
  9. Bonnarens F, Einhorn TA. Production of a standard closed fracture in laboratory animal bone. J Orthop Res. 1984;2(1):97-101. https://doi.org/10.1002/jor.1100020115
  10. Frost HM. The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop. 1989;(248):283-93.
  11. Park SG, Shon OJ. Impaired bone healing metabolic and mechanical causes. J Korean Fract Soc. 2017;30(1):40-51. https://doi.org/10.12671/jkfs.2017.30.1.40
  12. Son WT, Song TW, Oh MS. Healing effect of Soongiwhalhyultang extract on tibia fractured rats. J Korean Med Rehabil. 1999;9(2):350-62.
  13. Keum DH, Kim SS. Healing Effect of Bokwonhwalhyul-tang on tibia fractured rats. The Journal of the Korea Institute of Oriental Medical Informatics. 2002;8(1):46-66.
  14. Hang TG, Oh MS, Song TW, Kim KS. Helling effect of Sintongchugoetang Water Extract on Tibia Fractured rats. Daejeon University, Institute of Korean Medicine. 1999;8(1):727-38.
  15. Jung IM. Effects of Dangkwisoo-san(dangguixu-san) and native copper on TGF-$TGF{\beta}I$ expression in fractured rats [dissertation]. Naju (KR): Dongshin University; 2007.
  16. Lee HG, Oh MS. Effects of Jeopgolsan (JGS) extract on fracture healing. J Korean Med Rehabil. 2018;28(1):1-17. https://doi.org/10.18325/jkmr.2018.28.1.1
  17. Ha HJ, Oh MS. Experimental study of Dohongsamul-tang (Taohongsiwu-tang) on fracture healing. J Korean Med Rehabil. 2020;30(2):47-66.
  18. Lee SH. Affirmative effect of Hwaweo-jeon(Huayu-jian) in osteoblast cells and tibia fracture-induced mice [dissertation]. Wonju(KR):Sangji University; 2020.
  19. Ryum YH, Oh MS, Song TW. Helling effect of Gamigungguitang and GamigungguitangGaNokyong water extract on tibia fractured rats. Daejeon University, Institute of Korean Medicine. 1999;8(1):675-87.
  20. Li YC, Oh MS. Effects of Joaguihwan (JGH) extract on changes of anti-oxidation, anti-inflammatory in RAW 264.7 cells and on factors related with bone metabolism in skull fractured rat. J Korean Med Rehabil. 2016;26(3):31-49. https://doi.org/10.18325/jkmr.2016.26.3.31
  21. Kim MK. An experimental study of Cheong-A-Won on factors related with bony union in femur fractured mice [dissertation]. Daejeon (KR):Daejeon University; 2018.
  22. Park JO, Oh MS. The healing effect of Jinmu-tang (Zhenwu-tang) in femur fractured rats. J Korean Med Rehabil. 2020;30(2):19-35. https://doi.org/10.18325/jkmr.2020.30.2.19
  23. Keum DH, Kim SS. Healing effect of pyrite on tibia fractured rats. J Korean Med Rehabil. 2002;12(2):61-90.
  24. Shin KM, Jung CY, Hwan MS, Lee SD, Kim KH, Kim KS. Effects of administration of pyritum on fracture healing in mice. Journal of Acupuncture Research. 2009;26(5):65-75.
  25. Union of College of Korean Traditional Medicine. Phytology (Herbal medicine). Seoul:Yeonglimsa. 2004:473-4.
  26. Kejian L. Leech treatment of acute ischemic stroke systematic review of randomized controlled trials. Mod J Integr Tradit Chin West Med. 2006;15(17):13-5.
  27. Lee JY, Kim EK, Oh HA, Lee HS, Sohn Y, Jung HS, Kim YB, Park SK, Sohn NW. Effect of Whitmania pigra whitman on the allergic inflammatory response. J Korean Orient Med. 2008; 29(2):81-95.
  28. Oryan A, Monazzah S, Bigham-Sadegh A. Bone injury and fracture healing biology. Biomed Environ Sci. 2015;28:57-71. https://doi.org/10.3967/bes2015.006
  29. Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res, 2008;87:107-18. https://doi.org/10.1177/154405910808700215
  30. Marsell R, Einhorn TA. The biology of fracture healing. Injury. 2011;42:551-5. https://doi.org/10.1016/j.injury.2011.03.031
  31. Einhorn TA. The science of fracture healing. J Orthop Trauma. 2005;19(10 Suppl):S4-S6. https://doi.org/10.1097/00005131-200511101-00002
  32. Isaksson H, Grongroft I, Wilson W, Donkelaar CC, Rietbergen B, Tami A, Huiskes R, Ito K. Remodeling of fracture callus in mice is consistent with mechanical. J Orthop Res. 2009;27(5):664-72. https://doi.org/10.1002/jor.20725
  33. Magnusson P, Larsson L, Magnusson M, Davie MW, Sharp CA. Isoforms of bone alkaline phosphatase: characterization and origin in human trabecular and cortical bone. J Bone Miner Res. 1999;14(11):1926-33. https://doi.org/10.1359/jbmr.1999.14.11.1926
  34. Allen MJ. Biochemical markers of bone metabolism in animals: uses and limitations. Veterinary Clinical Pathology. 2003;32(3):101-13. https://doi.org/10.1111/j.1939-165X.2003.tb00323.x
  35. Seibel MJ. Biochemical markers of bone turnover Part I: biochemistry and variability. Clin Biochem Rev. 2005;26:97-122.
  36. Yang JM, Sung DM, Kim EG, Lee SD. Effects of long-term intake of Korean medicine on gynecology. J Korean Med. 2020;41(1):84-92. https://doi.org/10.13048/jkm.20006
  37. Kim DW, Oh SH, Lee EJ, Kim HK, An IH, Kim SM, Gwen MH, Lee SM, Huh JH. The change of renal function in patient with long term herb medication by frequently prescribed formular. KOMS. 1994;15(1):410-8.
  38. Yoshikawa M, Ogata A. Expression of the osteoblastic marker in human alveolar bone cells spheroid. J Jpn Soc Periodontol. 2006;48:276-84. https://doi.org/10.2329/perio.48.276
  39. Lee HS, Lee CS, Jang JS, Lee JD, Um SM. Changes of serum alkaline phosphatase and osteocalcin during fracture healing. J Korean Orthop Assoc. 2002;37(3):411-5. https://doi.org/10.4055/jkoa.2002.37.3.411
  40. Komori T. Regulation of bone development and extracellular matrix protein genes by Runx2. Cell and Tissue Research. 2009;339(1):189-95. https://doi.org/10.1007/s00441-009-0832-8
  41. Pierre JM. Transcription factors controlling osteoblastogenesis. Archives of Biochemistry and Biophysics. 2008;473(2):98-105. https://doi.org/10.1016/j.abb.2008.02.030
  42. Nishio Y, Dong Y, Paris M, O'Keefe RJ, Schwarz EM, Drissi H. Runx2-mediated regulation of the zinc finger osterix/Sp7 gene. Gene. 2006;372:62-70. https://doi.org/10.1016/j.gene.2005.12.022
  43. Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000;16:191-220. https://doi.org/10.1146/annurev.cellbio.16.1.191
  44. Kim OH, Nishimura K, Cho TJ. Imaging diagnosis of skeletal dysplasias and malformation syndromes. Seoul: Ryomoongak. 2019:15-7.
  45. Cha BH, Kim JH, Kang SW, Do HJ, Jang JW, Choi YR, Park HS, Kim BS, Lee SH. Cartilage tissue formation from dedifferentiated chondrocytes by codelivery of BMP-2 and SOX-9 genes encoding bicistronic vector. Cell Transplant. 2013;22(9):1519-28. https://doi.org/10.3727/096368912X647261
  46. Bi W, Deng JM, Zhang Z, Behringer RR, Crombrugghe B. Sox9 is required for cartilage formation. Nature Genetics. 1999;22(1):85-94. https://doi.org/10.1038/8792
  47. Sobacchi C, Menale C, Villa A. The RANKL-RANK axis: a bone to thymus round trip. Front Immunol. 2019;10:629. https://doi.org/10.3389/fimmu.2019.00629
  48. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13:2412-24. https://doi.org/10.1101/gad.13.18.2412
  49. Siggelkow H, Eidner T, Lehmann G, Viereck V, Raddatz D, Munzel U, Hein G, Hufner M. Cytokines, osteoprotegerin, and RANKL in vitro and histomorphometric indices of bone turnover in patients with different bone diseases. J Bone Miner Res. 2003;18:529-38. https://doi.org/10.1359/jbmr.2003.18.3.529
  50. Yamamoto M, Murakami T, Nishikawa M, Tsuda E, Mochizuki S, Higashio K, Akatsu T, Motoyoshi K, Nagata N. Hypocalcemic effect of osteoclastogenesis inhibitory factor/osteoprotegerin in the thyroparathyroidectomized rat. Endocrinology. 1998; 139:4012-5. https://doi.org/10.1210/endo.139.9.6290
  51. Aguila HL, Rowe DW. Skeletal development, bone remodeling, and hematopoiesis. Immunological Review. 2005;208(1):7-18. https://doi.org/10.1111/j.0105-2896.2005.00333.x
  52. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun. 1998;247:610-5. https://doi.org/10.1006/bbrc.1998.8697