DOI QR코드

DOI QR Code

Review on Changes in Surface Properties and Performance of Polyamide Membranes when Exposed to Acidic Solutions

산성용액 노출 시 폴리아마이드 분리막의 표면성질 및 투과성능 변화에 관한 총설

  • 이형개 (울산과학기술원 도시환경공학부) ;
  • 후엔티탄다오 (울산과학기술원 도시환경공학부) ;
  • 강우석 (울산과학기술원 도시환경공학부) ;
  • 권영남 (울산과학기술원 도시환경공학부)
  • Received : 2020.09.10
  • Accepted : 2020.10.09
  • Published : 2020.10.31

Abstract

Various kind of solutions need to be separated, purified, and concentrated using membranes in the field of industries. However, when the solution contains strong acids, the use of membrane is limited. Acid resistant membrane currently available in market does not show high efficiency of flux. This review explains the causes and mechanisms of changes in surface properties and performance of polyamide membranes when exposed to acidic solutions, and this can be used in the development of a membrane with acid resistance and high flux.

산업분야에서는 다양한 용액을 대상으로 분리, 정제, 농축 등의 공정이 필요하며, 분리막이 그 역할을 잘 수행해 오고 있다. 반면, 처리 대상 용액이 강산을 함유하고 있는 경우, 대부분의 분리막은 산에 취약하기 때문에 사용이 제한적일 수밖에 없다. 현재 내산성 분리막으로 상용화 되고 있는 분리막은 투과속도가 낮은 문제점을 갖고 있다. 이에, 투과속도가 높은 폴리아마이드 분리막에 내산성을 부여하기 위한 접근 방법을 모색하기 위한 기초 자료로 본 총설에서는 폴리아마이드 분리막이 산성 용액 노출 시 표면성질 및 투과특성이 변화하는 원인과 기작에 대해 살펴보고자 한다.

Keywords

References

  1. D. Shin, H. S. Moon, Y. Y. Yoon, U. Yun, Y.-H. Lee, K. Ha, and S. P. Hyun, "The current status of strong acids production, consumption, and spill cases in Korea", J. Soil Groundw. Environ., 19, 6 (2014). https://doi.org/10.7857/JSGE.2014.19.6.006
  2. D. Jakobs and G. Baumgarten, "Nanofiltration of nitric acidic solutions from picture tube production", Desalination, 145, 65 (2002). https://doi.org/10.1016/S0011-9164(02)00387-9
  3. H.-S. Shin, C.-D. Jin, and K.-H. Youm, "Recycling of acidic etching waste solution containing heavy metals by nanofiltration (I): Evaluation of acid stability of commercial nanofiltration membranes", Membr. J., 19, 317 (2009).
  4. E. Rasanen, M. Nystrom, J. Sahlstein, and O. Tossavainen, "Purification and regeneration of diluted caustic and acidic washing solutions by membrane filtration", Desalination, 149, 185 (2002). https://doi.org/10.1016/S0011-9164(02)00757-9
  5. T. J. K. Visser, S. J. Modise, H. M. Krieg, and K. Keizer, "The removal of acid sulphate pollution by nanofiltration", Desalination, 140, 79 (2001). https://doi.org/10.1016/S0011-9164(01)00356-3
  6. J. Tanninen, M. Manttari, and M. Nystrom, "Nanofiltration of concentrated acidic copper sulphate solutions", Desalination, 189, 92 (2006). https://doi.org/10.1016/j.desal.2005.06.017
  7. Y. S. Zimmermann, C. Niewersch, M. Lenz, Z. Z. Kul, P. F. X. Corvini, A. Schaffer, and T. Wintgens, "Recycling of indium from CIGS photovoltaic cells: Potential of combining acid-resistant nanofiltration with liquid-liquid extraction", Environ. Sci. Technol., 48, 13412 (2014). https://doi.org/10.1021/es502695k
  8. S. T. Weinman, E. M. Fierce, and S. M. Husson, "Nanopatterning commercial nanofiltration and reverse osmosis membranes", Sep. Purif. Technol., 209, 646 (2019). https://doi.org/10.1016/j.seppur.2018.09.012
  9. M. H. Liu, G. H. Yao, Q. B. Cheng, M. Ma, S. C. Yu, and C. J. Gao, "Acid stable thin-film composite membrane for nanofiltration prepared from naphthalene-1,3,6-trisulfonylchloride (NTSC) and piperazine (PIP)", J. Membr. Sci., 415, 122 (2012). https://doi.org/10.1016/j.memsci.2012.04.043
  10. Microdynnaidir, Product specification, https://www.microdyn-nadir.com/flat-sheet-membrane-data-sheets.
  11. A. Technology, Data sheets, http://www.amsmembrane.com/en/products/data-sheets.
  12. W. Stumm and J. J. Morgan, Aquatic Chemistry, Third ed., Wiley, 1995.
  13. B. M. Jun, S. H. Kim, S. K. Kwak, and Y. N. Kwon, "Effect of acidic aqueous solution on chemical and physical properties of polyamide NF membranes", Appl. Surf. Sci., 444, 387 (2018). https://doi.org/10.1016/j.apsusc.2018.03.078
  14. C. R. Kemnitz and M. J. Loewen, ""Amide resonance" correlates with a breadth of C-N rotation barriers", J. Am. Chem. Soc., 129, 2521 (2007). https://doi.org/10.1021/ja0663024
  15. S. Mahesh, K. C. Tang, and M. Raj, "Amide bond activation of biological molecules", Molecules, 23, 2615 (2018). https://doi.org/10.3390/molecules23102615
  16. J. E. McMurry, Organic Chemistry, Cengage Learning (2015).
  17. Q. Ma, P. J. Shuler, C. W. Aften, and Y. Tang, "Theoretical studies of hydrolysis and stability of polyacrylamide polymers", Polym. Degrad. Stabil., 121, 69 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.08.012
  18. J. I. Mujika, J. M. Mercero, and X. Lopez, "Waterpromoted hydrolysis of a highly twisted amide: Rate acceleration caused by the twist of the amide bond", J. Am. Chem. Soc., 127, 4445 (2005). https://doi.org/10.1021/ja044873v
  19. Q. P. Wang, A. J. Bennet, R. S. Brown, and B. D. Santarsiero, "Distorted amides as models for activated peptide N-C(O) unists.3. synthesis, hydrolytic profile, and molecular-structure of 2,3,4,5-tetrahydro-2-oxo-1,5-propanobenzazepine", J. Am. Chem. Soc., 113, 5757 (1991). https://doi.org/10.1021/ja00015a033
  20. H. S. Shin, Y. D. Jung, S. P. Hong, and J. Y. Koo, "Acid resistant nanomembrane and the preparing method", Toray Chemical Korea Co., ltd, Korean Patent, 10-1899053 (2018).
  21. V. Somayaji and R. S. Brown, "Distorted amides as models for activated peptide N-C=O units produced during enzyme-catalyzed acyl transfer-reactions .1. The mechanism of hyrolysis of 3,4-dihydro-2-oxo-1,4-ethanoquinoline and 2,3,4,5-tetrahydro-2-oxo-1,5-ethanobenzazepine", J. Org. Chem., 51, 2676 (1986). https://doi.org/10.1021/jo00364a012
  22. B. M. Jun, H. K. Lee, Y. I. Park, and Y. N. Kwon, "Degradation of full aromatic polyamide NF membrane by sulfuric acid and hydrogen halides: Change of the surface/permeability properties", Polym. Degrad. Stabil., 162, 1 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.02.008
  23. J. E. Gu, B. M. Jun, and Y. N. Kwon, "Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane", Water Res., 46, 5389 (2012). https://doi.org/10.1016/j.watres.2012.07.030
  24. B.-M. Jun, H. K. Lee, and Y.-N. Kwon, "Acid-catalyzed hydrolysis of semi-aromatic polyamide NF membrane and its application to water softening and antibiotics enrichment", Chem. Eng. J., 332, 419 (2018). https://doi.org/10.1016/j.cej.2017.09.062
  25. J. E. Cadotte, R. J. Petersen, R. E. Larson, and E. E. Erickson, "New thin-film composite seawater reverse-osmosis membrane", Desalination, 32, 25 (1980). https://doi.org/10.1016/S0011-9164(00)86003-8
  26. E. M. V. Wagner, B. D. Freeman, M. M. Sharma, M. A. Hickner, and S. J. Altman, "Polyamide desalination membrane characterization and surface modification to enhance souling resistance", Sandia National Laboratories, SAND2010-5540 (2010).
  27. M. Stolov and V. Freger, "Membrane charge weakly affects ion transport in reverse osmosis", Environ. Sci. Technol. Lett., 7, 440 (2020). https://doi.org/10.1021/acs.estlett.0c00291
  28. H. G. Park and Y. N. Kwon, "Investigation on the factors determining permeate pH in reverse osmosis membrane processes", Desalination, 430, 147 (2018). https://doi.org/10.1016/j.desal.2017.12.060
  29. W. Z. Yu, T. Liu, J. Crawshaw, T. Liu, and N. Graham, "Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH", Water Res., 139, 353 (2018). https://doi.org/10.1016/j.watres.2018.04.025
  30. J. J. Qin, M. H. Oo, H. W. Lee, and B. Coniglio, "Effect of feed pH on permeate pH and ion rejection under acidic conditions in NF process", J. Membr. Sci., 232, 153 (2004). https://doi.org/10.1016/j.memsci.2003.12.010
  31. J. J. Qin, M. H. Oo, and B. Coniglio, "Relationship between feed pH and permeate pH in reverse osmosis with town water as feed", Desalination, 177, 267 (2005). https://doi.org/10.1016/j.desal.2004.11.022