References
- D. Shin, H. S. Moon, Y. Y. Yoon, U. Yun, Y.-H. Lee, K. Ha, and S. P. Hyun, "The current status of strong acids production, consumption, and spill cases in Korea", J. Soil Groundw. Environ., 19, 6 (2014). https://doi.org/10.7857/JSGE.2014.19.6.006
- D. Jakobs and G. Baumgarten, "Nanofiltration of nitric acidic solutions from picture tube production", Desalination, 145, 65 (2002). https://doi.org/10.1016/S0011-9164(02)00387-9
- H.-S. Shin, C.-D. Jin, and K.-H. Youm, "Recycling of acidic etching waste solution containing heavy metals by nanofiltration (I): Evaluation of acid stability of commercial nanofiltration membranes", Membr. J., 19, 317 (2009).
- E. Rasanen, M. Nystrom, J. Sahlstein, and O. Tossavainen, "Purification and regeneration of diluted caustic and acidic washing solutions by membrane filtration", Desalination, 149, 185 (2002). https://doi.org/10.1016/S0011-9164(02)00757-9
- T. J. K. Visser, S. J. Modise, H. M. Krieg, and K. Keizer, "The removal of acid sulphate pollution by nanofiltration", Desalination, 140, 79 (2001). https://doi.org/10.1016/S0011-9164(01)00356-3
- J. Tanninen, M. Manttari, and M. Nystrom, "Nanofiltration of concentrated acidic copper sulphate solutions", Desalination, 189, 92 (2006). https://doi.org/10.1016/j.desal.2005.06.017
- Y. S. Zimmermann, C. Niewersch, M. Lenz, Z. Z. Kul, P. F. X. Corvini, A. Schaffer, and T. Wintgens, "Recycling of indium from CIGS photovoltaic cells: Potential of combining acid-resistant nanofiltration with liquid-liquid extraction", Environ. Sci. Technol., 48, 13412 (2014). https://doi.org/10.1021/es502695k
- S. T. Weinman, E. M. Fierce, and S. M. Husson, "Nanopatterning commercial nanofiltration and reverse osmosis membranes", Sep. Purif. Technol., 209, 646 (2019). https://doi.org/10.1016/j.seppur.2018.09.012
- M. H. Liu, G. H. Yao, Q. B. Cheng, M. Ma, S. C. Yu, and C. J. Gao, "Acid stable thin-film composite membrane for nanofiltration prepared from naphthalene-1,3,6-trisulfonylchloride (NTSC) and piperazine (PIP)", J. Membr. Sci., 415, 122 (2012). https://doi.org/10.1016/j.memsci.2012.04.043
- Microdynnaidir, Product specification, https://www.microdyn-nadir.com/flat-sheet-membrane-data-sheets.
- A. Technology, Data sheets, http://www.amsmembrane.com/en/products/data-sheets.
- W. Stumm and J. J. Morgan, Aquatic Chemistry, Third ed., Wiley, 1995.
- B. M. Jun, S. H. Kim, S. K. Kwak, and Y. N. Kwon, "Effect of acidic aqueous solution on chemical and physical properties of polyamide NF membranes", Appl. Surf. Sci., 444, 387 (2018). https://doi.org/10.1016/j.apsusc.2018.03.078
- C. R. Kemnitz and M. J. Loewen, ""Amide resonance" correlates with a breadth of C-N rotation barriers", J. Am. Chem. Soc., 129, 2521 (2007). https://doi.org/10.1021/ja0663024
- S. Mahesh, K. C. Tang, and M. Raj, "Amide bond activation of biological molecules", Molecules, 23, 2615 (2018). https://doi.org/10.3390/molecules23102615
- J. E. McMurry, Organic Chemistry, Cengage Learning (2015).
- Q. Ma, P. J. Shuler, C. W. Aften, and Y. Tang, "Theoretical studies of hydrolysis and stability of polyacrylamide polymers", Polym. Degrad. Stabil., 121, 69 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.08.012
- J. I. Mujika, J. M. Mercero, and X. Lopez, "Waterpromoted hydrolysis of a highly twisted amide: Rate acceleration caused by the twist of the amide bond", J. Am. Chem. Soc., 127, 4445 (2005). https://doi.org/10.1021/ja044873v
- Q. P. Wang, A. J. Bennet, R. S. Brown, and B. D. Santarsiero, "Distorted amides as models for activated peptide N-C(O) unists.3. synthesis, hydrolytic profile, and molecular-structure of 2,3,4,5-tetrahydro-2-oxo-1,5-propanobenzazepine", J. Am. Chem. Soc., 113, 5757 (1991). https://doi.org/10.1021/ja00015a033
- H. S. Shin, Y. D. Jung, S. P. Hong, and J. Y. Koo, "Acid resistant nanomembrane and the preparing method", Toray Chemical Korea Co., ltd, Korean Patent, 10-1899053 (2018).
- V. Somayaji and R. S. Brown, "Distorted amides as models for activated peptide N-C=O units produced during enzyme-catalyzed acyl transfer-reactions .1. The mechanism of hyrolysis of 3,4-dihydro-2-oxo-1,4-ethanoquinoline and 2,3,4,5-tetrahydro-2-oxo-1,5-ethanobenzazepine", J. Org. Chem., 51, 2676 (1986). https://doi.org/10.1021/jo00364a012
- B. M. Jun, H. K. Lee, Y. I. Park, and Y. N. Kwon, "Degradation of full aromatic polyamide NF membrane by sulfuric acid and hydrogen halides: Change of the surface/permeability properties", Polym. Degrad. Stabil., 162, 1 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.02.008
- J. E. Gu, B. M. Jun, and Y. N. Kwon, "Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane", Water Res., 46, 5389 (2012). https://doi.org/10.1016/j.watres.2012.07.030
- B.-M. Jun, H. K. Lee, and Y.-N. Kwon, "Acid-catalyzed hydrolysis of semi-aromatic polyamide NF membrane and its application to water softening and antibiotics enrichment", Chem. Eng. J., 332, 419 (2018). https://doi.org/10.1016/j.cej.2017.09.062
- J. E. Cadotte, R. J. Petersen, R. E. Larson, and E. E. Erickson, "New thin-film composite seawater reverse-osmosis membrane", Desalination, 32, 25 (1980). https://doi.org/10.1016/S0011-9164(00)86003-8
- E. M. V. Wagner, B. D. Freeman, M. M. Sharma, M. A. Hickner, and S. J. Altman, "Polyamide desalination membrane characterization and surface modification to enhance souling resistance", Sandia National Laboratories, SAND2010-5540 (2010).
- M. Stolov and V. Freger, "Membrane charge weakly affects ion transport in reverse osmosis", Environ. Sci. Technol. Lett., 7, 440 (2020). https://doi.org/10.1021/acs.estlett.0c00291
- H. G. Park and Y. N. Kwon, "Investigation on the factors determining permeate pH in reverse osmosis membrane processes", Desalination, 430, 147 (2018). https://doi.org/10.1016/j.desal.2017.12.060
- W. Z. Yu, T. Liu, J. Crawshaw, T. Liu, and N. Graham, "Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH", Water Res., 139, 353 (2018). https://doi.org/10.1016/j.watres.2018.04.025
- J. J. Qin, M. H. Oo, H. W. Lee, and B. Coniglio, "Effect of feed pH on permeate pH and ion rejection under acidic conditions in NF process", J. Membr. Sci., 232, 153 (2004). https://doi.org/10.1016/j.memsci.2003.12.010
- J. J. Qin, M. H. Oo, and B. Coniglio, "Relationship between feed pH and permeate pH in reverse osmosis with town water as feed", Desalination, 177, 267 (2005). https://doi.org/10.1016/j.desal.2004.11.022