DOI QR코드

DOI QR Code

Effect of Plasma-activated Water Process on the Growth and Functional Substance Content of Lettuce during the Cultivation Period in a Deep Flow Technique System

담액수경재배 시스템에서 플라즈마수 처리가 상추의 생육 및 페놀류 함량에 미치는 영향

  • Noh, Seung Won (Department of Horticultural Science, Chungnam National University) ;
  • Park, Jong Seok (Department of Horticultural Science, Chungnam National University) ;
  • Kim, Sung Jin (Department of Horticultural Science, Chungnam National University) ;
  • Kim, Dae-Woong (Department of Plasma Engineering, Korea Institute of Machinery & Materials) ;
  • Kang, Woo Seok (Department of Plasma Engineering, Korea Institute of Machinery & Materials)
  • 노승원 (남대학교 농업생명과학대학 원예학과 대학원) ;
  • 박종석 (충남대학교 농업생명과학대학 원예학과) ;
  • 김성진 (남대학교 농업생명과학대학 원예학과 대학원) ;
  • 김대웅 (한국기계연구원 플라즈마연구실) ;
  • 강우석 (한국기계연구원 플라즈마연구실)
  • Received : 2020.09.25
  • Accepted : 2020.10.17
  • Published : 2020.10.31

Abstract

We suggest a hydroponic cultivation system combined with a plasma generator to investigate the changes in the growth and functional substance content of lettuces during the cultivation period. Lettuce seedlings of uniform size were planted in semi-DFT after seeding for 3 weeks, and the plasma-activated water was intermittently operated for 1 hour at an 8 hours cycle for 4 weeks. Lettuces grew with or without plasma-activated water with the nutrient solution in hydroponics culture systems. Among the reactive oxygen species generated during plasma-activated water treatment, brown spots and necrosis appeared in the individuals closer to the plasma generating device due to O3, and there was no significant difference in the growth parameters. While the rutin and total phenolic content of the lettuce shoot grown in the nutrient solution were higher than that of the plasma-activated water, epicatechin contents in plasma-activated water were significantly greater than the nutrient solution. However, in the roots, all kinds of secondary metabolites measured in this work, rutin, epicatechin, quercetin, and total phenolic contents, were significantly higher in the plasma-activated water than the control. These results were indicated that the growth of lettuce was decreased due to the reactive oxygen species such as ozone in the plasma-activated water, but the secondary metabolites in the root zone increased significantly. It has needed to use this technology for the cultivation of root vegetables with the modified plasma-activated water systems to increase secondary metabolite in the roots.

본 연구에서는 플라즈마 발생장치를 수경재배 시스템과 결합하여 재배 기간 동안 처리 시 상추의 생육 및 기능성 물질 함량 변화를 살펴보기 위해 실시하였다. 3주 동안 육묘하여 균일한 크기의 상추 묘를 semi-DFT에 정식하였으며, 플라즈마 공정 장치를 결합하여 4주 동안 8시간 주기로 1시간씩 수중에서 간헐적으로 작동시켰다. 양액(대조구), 플라즈마 활성수(4.2kV, 5.7kV)를 사용하여 온실에서 재배하였으며 이후 수확하여 생육조사 및 기능성 물질 분석을 실시하였다. 플라즈마 활성수 처리 기간 동안 발생되는 활성산소종 중에서 O3로 인하여 플라즈마 발생 장치에 근접한 개체일수록갈색 반점 및 괴사현상이 나타났으며, 생육조사를 실시한 결과 유의적 차이가 나타나지 않았다. 기능성 물질 분석 결과 상추 지상부의 rutin과 총 페놀 함량은 플라즈마수보다 높았지만, epicatechin의 경우 플라즈마수 처리에서 함량이 더 많았다. 근권부에서 측정된 이차대사산물인 rutin, epicatechin, quercetin 및 총 페놀 함량은 대조구보다 플라즈마수 처리구에서 유의하게 높았다. 이러한 결과는 플라즈마수 처리 시간동안 수중에 오존과 같은 활성산소종으로 인해 지상부 생육이 잘 이루어지지 못했으나, 근권 영역에서는 이차대사산물이 크게 증가하였다. 향후 간헐적인 플라즈마 활성수 생성에 따른 생리 장해를 극복하고 뿌리채소의 수경재배 시스템에 적용하여 이차대사산물을 증가시키기 위한 본 기술의 도입이 필요하다.

Keywords

References

  1. Amarjeet, S.N., R. Godhara, A. Kumar, A. Singh, and A. Kumar. 1996. Effect of NPK on flowering and flower quality of tuberose (Polyanthus tuberose L.) Haryana Agriculture University J. Res. 26:43-49.
  2. Apel, K., and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  3. Beckerson, D.W., and G. Hofstra. 1980. Effect of sulphur dioxide and ozone, single or in combination, on membrane permeability. Can. J. Bot. 58:451-457. https://doi.org/10.1139/b80-053
  4. Bres, W., and L.A. Weston. 1992. Nutrient accumulation and tipburn in NFT-grown lettuce at several potassium and pH levels. Hort. Science 27:790-792.
  5. Bruggeman, P., and C. Leys. 2009. Non-thermal plasmas in and in contact with liquids. J. Phys. D. Appl. Phys. 42:053001. https://doi.org/10.1088/0022-3727/42/5/053001
  6. Bahin, E., C. Bailly, B. Sotta, I. Kranner, F. Corbineau and J. Leymarie. 2011. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant, Cell Environ 34:980-993. https://doi.org/10.1111/j.1365-3040.2011.02298.x
  7. Becker, C., B. Urlic, M.J. Spika, H.P. Klaring, A. Krumbein, S. Baldermann, Ban, S. Perica, and D. Schwaiz. 2015. Nitrogen limited red and green leaf lettuce accumulate flavonoid glycosides, caffeic acid derivatives and sucrose while losing chlorophylls, ${\beta}$-carotenes and xanthophylls. PLoS ONE 10(11):e0142867. https://doi.org/10.1371/journal.pone.0142867
  8. Baik. H.J., and B.Y. Yi. 2018. Effects of $H_2O_2$ and salicylic acid treatment on monoterpene content of Eucalyptus pulverulenta. Flower Res. 26:55-60. https://doi.org/10.11623/frj.2018.26.2.03
  9. Coleman, M.D., R.E Dickson, J.G. Isebrands, and D.F. Karnosky. 1996. Root growth and physiology of potted and field-grown trembling aspen exposed to tropospheric ozone. Tree Physiology 16:145-150. https://doi.org/10.1093/treephys/16.1-2.145
  10. Christou, A., G.A. Manganaris, and V. Fotopoulos. 2014. Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and nonenzymatic antioxidants. Environmental and Experimental Botany 107:46-54. https://doi.org/10.1016/j.envexpbot.2014.05.009
  11. Deng, X., J. Shi, and M.G. Kong. 2006. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Transactions on Plasma Science 34:1310-1316. https://doi.org/10.1109/TPS.2006.877739
  12. Emmert S., F. Brehmer, H. Hansle, A. Helmke, N. Mertens, and R. Ahmed. 2013. Atmospheric pressure plasma indermatology. Clinical Plasma Med. 1:24-29. https://doi.org/10.1016/j.cpme.2012.11.002
  13. Heath, R.L. 1987. The biochemistry of ozone attack on the plasma membrane of plant cells. Adv. Phytochem. 21:29-54.
  14. Hung. S.H., C.W. Yu, and C.H. Lin. 2005. Hydrogen peroxide functions as a stress signal in plants. Bot. Bull. Acad. Sin. 46:1-10.
  15. Heinlin J., G. Morfill, M. Landthaler, W. Stolz, G. Isbary, and J.L. Zimmermann. 2010. Plasma medicine: possibleapplications in dermatology. J. Dtsch. Dermatol. Ges. 8:968-976.
  16. Habibi, G. 2014. Hydrogen peroxide ($H_2O_2$) generation, scavenging and signaling in plants. Oxidative Damage to Plants 557-574.
  17. Jang, S.W., E.H. Lee, and W.B. Kim. 2007. Analysis of research and development papers of lettuce in Korea. Kor. J. Hort. Sci. Technol. 25:295-303.
  18. Jaganath, I.B., W. Mullen, M.E. Lean, C.A. Edwards, and A. Crozier. 2009. In vitro catabolism of rutin by human fecal bacteria and the antioxidant capacity of its catabolites. Free Radic. Biol. Med. 47:1180-1189. https://doi.org/10.1016/j.freeradbiomed.2009.07.031
  19. Kang, W.S, J.M. Park, Y. Kim, S.H. Hong. 2002. Numerical study on influences of barrier arrangements on dielectric barrier discharge characteristics. IEEE Trans. Plasma Sci. 13:504-510.
  20. Kang, J.W., J.H. Kim, K. Song, S.H. Kim, J.H. Yoon, and K.S. Kim. 2010. Kaempferol and quercetin components of Ginkgo biloba extract (EGb 761), induced caspase-3-dependent apoptosis in oral cavity cancer cells. Phytotherapy Research 1:77-82.
  21. Kang, W.S, M. Hur, Y.H. Song. 2015. Effect of voltage polarity on the plasma-liquid interactions. Appl. Phys. Lett. 107: 094101. https://doi.org/10.1063/1.4930018
  22. Kreft, S., M. Knapp and I. Kreft. 1999. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J. Agric. Food Chem. 11:4649-4652. https://doi.org/10.1021/jf990186p
  23. Kim, H.J., J.M. Fonseca, J.H. Choi, and C. Kubota. 2007. Effect of methyl jasmonate on phenolic compounds and carotenoid of romaine lettuce (Lactuca sativa L.). J. Agric. Food Chem. 55:10366-10372. https://doi.org/10.1021/jf071927m
  24. Kim, D.S., and Y.S Park. 2012. Change of hydroponic components by plasma treatment. Journal of the Environmental Sciences 21:363-368. https://doi.org/10.5322/JES.2012.21.3.363
  25. Locke, B.R., M. Sato, P. Sunka, M.R. Hoffmann, and J.S. Chang. 2006. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind. Eng. Chem. Res. 45:882-905. https://doi.org/10.1021/ie050981u
  26. Lee, K.W., J.K. Kundu, S.O. Kim, K.S. Chun, H.J. Lee, and Y.J. Surh. 2006. Cocoa polyphenol inhibit phorbol ester-induced superoxide anion formation in cultured HL-60 cells and expression of cyclooxygenase-2 and activation of NF-KB and MAPKs in mouse skin in vivo. J. Nutr. 136: 1150-1155. https://doi.org/10.1093/jn/136.5.1150
  27. Lee, D.G., K.H. Lee, K.W. Park, C.K. Han, B.Y. Ryu, E.J. Cho, and S. Lee. 2015. Isolation and identification of flavonoids with aldose reductase inhibitory activitiy from Petasites japonicus. Asian Journal of Chemistry 3:991-994.
  28. Lee, K.W., H.J. Je, T.H. Jung, Y.L. Lee, J.H. Choi, H.J. Hwang, and K.O. Shin. 2018. Comparison of components and antioxidant activity of cherry, aronia, and maquiberry. The Korean Journal of Food and Nutrition 31:729-736. https://doi.org/10.9799/KSFAN.2018.31.5.729
  29. Moazfar, A. 1996. Decreasing the $NO_3^-$ and increasing the vitamin C contents in spinach by a nitrogen deprivation method. Plant Foods for Human Nutrition 49:155-162. https://doi.org/10.1007/BF01091973
  30. Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-498. https://doi.org/10.1016/j.tplants.2004.08.009
  31. Moskova I., D. Todorova, V. Alexieva, S. Ivanov, and I. Sergiev. 2009. Effect of exogenous hydrogen peroxide on enzymatic and nonenzymatic antioxidants in leaves of young pea plants treated with paraquat. Plant Growth Regul. 57:193-202. https://doi.org/10.1007/s10725-008-9336-x
  32. Mulabagal, V., M. Ngouajio, A. Nair, Y.J. Zhang, A.L. Gottumukkala, and M.G. Nair. 2010. In vitro evaluation of red and greenlettuce (Lactuca sativa) for functional food properties. Food Chem. 118:300-306. https://doi.org/10.1016/j.foodchem.2009.04.119
  33. Mori, N., and H. Watanabe. 2017. Effects of oxidative stress on the growth of leaf lettuce upon $H_2O_2$ treatment. Eco-Engineering 29:31-38.
  34. Mampholo, B.M., M.M. Maboko, P. Soundy and D. Sivakumar. 2018. Variety-specific responses of lettuce grown in a gravel-film technique closed gydroponic system to N supply on yield, morphology, phytochemicals, mineral content and safety. Journal of Integrative Agriculture 17:2447-2457. https://doi.org/10.1016/S2095-3119(18)62007-6
  35. Orozco-Cardenas, M.L., J. Narvaez-Vasquez, and C.A. Ryan. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179-191. https://doi.org/10.1105/tpc.13.1.179
  36. Park, M.H., M.Y. Shim, and Y.B. Lee. 1999. Effects of pH level and electrical conductivity on growth, nutrient absorption, transpiration and $CO_2$ assimilation of leaf lettuce in hydroponics. The Korean Society for Bio-Environment Control 8:115-124.
  37. Pashikanti, S., D.R. de Alba., G.A. Boissonneault, and D. Cervantes-Laurean. 2010. Rutin metabolites : novel inhibitors of nonoxidative advanced glycation end products. Free Radic. Biol. Med 48:656-663. https://doi.org/10.1016/j.freeradbiomed.2009.11.019
  38. Rha, Y.A., M.S. Choi, and S.J. Park. 2014. Antioxidant and anti-adipogenic effects of fermentation Rhus verniciflua. Culinary Science & Hospitality Research 20:137-147. https://doi.org/10.20878/cshr.2014.20.3.012012012
  39. Sugiharto, B., and T. Sugiyama. 1992. Effects of nitrate and ammonium ongene expression of phosphoenol pyruvate carboxylase and nitrogen metabolism in maize leaf tissue during recovery from nitrogen stress. Plant Physiol 98:1403-1408. https://doi.org/10.1104/pp.98.4.1403
  40. Sakiyama, Y., H.W. Chang, D.B. Graves, T. Shimizu, and G.E. Morfill. 2012. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J. Phys. D. Appl. Phys 45:425201. https://doi.org/10.1088/0022-3727/45/42/425201
  41. Swieca, M. 2015. Production of ready-to-eat lentil sprouts with improvedantioxidant capacity: Optimization of elicitation conditions with hydrogen peroxide. Food Chem. 180:219-226. https://doi.org/10.1016/j.foodchem.2015.02.031
  42. Song, Y.S., Y.R. Park, S.M. Ryu, H.W. Jeon, S.H. Eom, and S.J. Lee. 2016. Sterilization and quality variation of dried red pepper by atmospheric pressure dielectric barrier discharge plasma. Korean J. Food Preservation 23:960-966. https://doi.org/10.11002/kjfp.2016.23.7.960
  43. Sivachandiran, L., and A. Khacef. 2017. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC. Adv. 7:1822-1832. https://doi.org/10.1039/C6RA24762H
  44. Trejo-Tellez, L.I., and F.C. Gomez-Merino. 2012. Nutrient solutions for hydroponic systems. In Hydroponics: A standardmethodology for plant biological researches. Intech. Rijecka,Croatia 1-22.
  45. Wojcicki, J., B. Barcew-Wiszniewska, L. Samochowiec, and L. Rozewi-cka. 1995. Extractum fagopyri reduces artheriosclerosis inhigh-fat diet fed rabbits. Die Pharmazie 50:560-562.
  46. Wulff, A., S. Antonnen, W. Heller, H. Jr. Sandermann and L. Karenlampi. 1996. Ozone sensitivity of Scots pine and Norway spruce from northern and local origin to long-term open-field fumigation in central Finland. Environmental Experimental Botany.36:209-312. https://doi.org/10.1016/0098-8472(96)01001-5
  47. Woo, S.Y., K.W. Kwon, J.C. Lee, and S.H. Lee. 2004. Chlorophyll contents and glutatihione reductase activity of Ailanthus altissima, Liriodendron tulipifera and Platanus occidentails seedlings to the ozone exposure. Journal of Korean Forest Society 93:423-427.
  48. Yu, S.O., and J.H. Bae. 2005. Development of optimal nutrient solution of tomato (Lycopercicon esculentum Mill.) in a closed soilless culture system. J. Bio-Env. con. 14:203-211.
  49. Zhong, J.J. 2001. Biochemical engineering of the production of plantspecific secondary metabolites by cell suspension cultures. Adv. Biochem. Eng. Biotechnol 72:1-26.
  50. Zhang, S., A. Rousseau, and T. Dufour. 2017. Promoting lentil germination and stem growth by plasma activated tap water, demineralized water and liquid fertilizer. Royal Society of Chemistry 7:31244-31251.