DOI QR코드

DOI QR Code

온도 상승처리가 복숭아 '미홍'의 수체생육 및 생리반응에 미치는 영향

Effect of the Elevated Temperature on the Growth and Physiological Responses of Peach 'Mihong' (Prunus persica)

  • 이슬기 (국립원예특작과학원 과수과) ;
  • 조정건 (국립원예특작과학원 과수과) ;
  • 정재훈 (국립원예특작과학원 과수과) ;
  • 류수현 (국립원예특작과학원 과수과) ;
  • 한점화 (국립원예특작과학원 과수과) ;
  • 도경란 (국립원예특작과학원 기획조정과)
  • Lee, Seul Ki (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Cho, Jung Gun (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Jeong, Jae Hoon (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Ryu, Suhyun (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Han, Jeom Hwa (Fruit Research Division, National Institute of Horticultural & Herbal Science) ;
  • Do, Gyung-Ran (Planning and Coordination Div3ision, National Institute of Horticultural & Herbal Science)
  • 투고 : 2020.06.30
  • 심사 : 2020.09.07
  • 발행 : 2020.10.31

초록

본 연구는 온도 상승에 따른 복숭아 '미홍'의 수체생육 및 생리반응에 미치는 영향을 알아보고자 수행되었다. 전주시 평년 온도를 대조구로 하여 평년 대비 +3.4℃(21C 중반기), +5.7℃(21C 후반기) 상승시켜 자연광온실에서 4월 25일부터 7월 5일까지 처리하였다. 수체 생육은 신초 수와 길이가 온도 상승에 따라 증가하였고, 엽면적은 통계적 유의차는 없었다. 수확기는 대조구, +3.4℃ 처리구, +5.7℃ 처리구에서 각각 7월 1일, 6월 24일, 21일로 온도가 높을수록 빨라졌다. 과중은 평년보다 3.4℃ 상승하였을 때 증가하였지만 5.7℃까지 상승할 경우 오히려 평년보다 감소하여, 주당 수량은 +3.4℃ 처리구(2,898g), 대조구(2,746g), +5.7℃ 처리구(2,404g) 순으로 많았다. 이는 과실 생육기인 5월부터 6월 초까지의 평균 최대광합성률이 +3.4℃ 처리구에서 14.93 μmol·CO2·m-2·s-1으로 대조구 13.79 μmol·CO2·m-2·s-1와 +5.7℃ 처리구의 13.20 μmol·CO2·m-2·s-1에 비해 높았고, 기공의 밀도 또한 +3.4℃ 처리구에서 229 ea/㎟로 대조구 181 ea/㎟에 비해 높았던 결과와도 관련이 있는 것으로 판단된다. 다음해 수량에 영향을 미치는 화아분화율은 +5.7℃ 처리구에서 59.8%로 대조구 63.8%, +3.4℃ 처리구 65.8%보다 감소하였다. 이상의 결과를 종합해보면 3.4℃ 까지의 온도 상승은 복숭아 '미홍'의 수량과 과실 품질에 긍정적인 영향을 주는 반면 5.7℃ 이상의 온도 상승은 부정적인 영향을 주는 것으로 판단된다.

This study was conducted to investigate the effect of elevated temperatures on the growth and physiological responses of peach 'Mihong' (Prunus persica). We simulated three different temperature conditions in the sunlight phytotron rooms from April 25 to July 5, 2019; Control (average temperature in normal years in Jeonju city), +3.4℃ treatment (expecting temperature in mid-21st century), +5.7℃ treatment (expecting temperature in late 21st century). The shoot numbers and lengths were increased while the temperature was increased, but the leaf areas were not statistically different. The harvest dates were July 1, June 24 and 21 at the control, +3.4℃, and +5.7℃, respectively. The fruit weights were increased at +3.4℃ but decreased at +5.7℃ compared to the control. The tree yield was the highest in the +3.4℃ (2,898g), followed by the control (2,746g) and the +5.7℃ (2,404g). These are related to the result that the average of maximum photosynthesis rate at 3.4℃ (14.93μmol·CO2·m-2·s-1) was higher than those at the control (13.79μmol·CO2·m-2·s-1) and +5.7℃ (13.20μmol·CO2·m-2·s-1) from mid-May to early June, the fruit growing season. Also, the stomatal densities were higher at the +3.4℃ (229ea/㎟), compared to the control (181ea/㎟). The rate of floral bud differentiation affecting the yield in the following year was the lowest at the +5.7℃. These results suggest that a temperature elevated to 3.4℃ in the future may give a positive effect on the yield and quality of peach 'Mihong' while a temperature elevated above 5.7℃ may affect negatively.

키워드

참고문헌

  1. Adams, S.R., K.E. Cokshull, and C.R.J. Cave. 2001. Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 88:869-877. https://doi.org/10.1006/anbo.2001.1524
  2. Albert, K.R., H. Ro-Poulsen, T.N. Mikkelsen, A. Michelsen, L. Linden, and C. Beier. 2011. Interactive effects of elevated $CO_2$, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. J. Exp. Bot. 62: 4253-4266. https://doi.org/10.1093/jxb/err133
  3. Chalmers, D.J., R.L. Canterford, P.H. Jerie, T.R. Jones, and T.D. Ugalde. 1975. Photosynthesis in relation to growth and distribution of fruit in peach trees. Aust. J. Plant Physiol. 2:635-645. https://doi.org/10.1071/PP9750635
  4. Crews, C.E., S.L. Williams, and H.M. Vines. 1975. Characteristics of photosynthesis in peach leaves. Planta 126:97-104. https://doi.org/10.1007/BF00380612
  5. Faust, M. 1989. Physiology of temperate zone fruit trees. John Wiley & Sons, Inc., New York. USA. p. 212-215.
  6. Fujii, J.A. and R.A. Kennedy. 1985. Seasonal changes in the photosynthetic rate in apple tree: a comparison between fruiting and nonfruiting tree. Plant Physiol. 78:519-524. https://doi.org/10.1104/pp.78.3.519
  7. Han, J.H., J.G. Cho, I.C. Son, S.H. Kim, I.B. Lee, I.M. Choi, and D.E. Kim. 2012. Effects of elevated carbon dioxide and temperature on photosynthesis and fruit characteristics of 'Niitaka' pear (Pyrus pyrifolia Nakai). Hort. Environ. Biotechnol. 53:357-361. https://doi.org/10.1007/s13580-012-0047-x
  8. Hao, L., L. Guo, R. Li, Y. Cheng, L. Huang, H. Zhou, M. Xu, F. Li, X. Zhang, and Y. Zheng. 2019. Responses of photosynthesis to high temperature stress associated with changes in leaf structure and biochemistry of blueberry (Vaccinium corymbosum L.). Sci. Hortic. 246:251-264. https://doi.org/10.1016/j.scienta.2018.11.007
  9. Harding, S.A., J.A. Guikema, and G.M. Paulsen. 1990. Photosynthetic decline from high temperature stress during maturation of wheat. Plant Physiol. 92:648-653. https://doi.org/10.1104/pp.92.3.648
  10. Hetherington, A.M., and F.I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424:901-908. https://doi.org/10.1038/nature01843
  11. KMA (Korea Meteorological Administration). 2012. Climate change report. Seoul, Korea. p. 70.
  12. Kwack, Y.B. 2013. Effect of early defoliation on flower bud formation, nonstructural carbohydrate accumulation, and fruit quality in kiwifruit. PhD Diss., Gyeongsang Nat. Univ., Jinju, Korea. 33-67 (in Korean).
  13. Kweon, H.J., D.H. Sagong, M.Y. Park., Y.Y. Song, K.H. Chung, J.C. Nam, J.H. Han, and K.R. Do. 2013. Influence of elevated $CO_2$ and air temperature on photosynthesis, shoot growth, and fruit quality of 'Fuji'/M.9 apple tree. Kor. J. Agric. For. Meteor. 15:245-263 (in Korean). https://doi.org/10.5532/KJAFM.2013.15.4.245
  14. Kwon, Y.H., J.M. Lee, H.H. Han, S.H. Ryu, J.H. Jeong, G.R. Do, J.H. Han, H.C. Lee, and H.S. Park. 2016. Physiological responses for soil water stresses in 'Mihong' peach tree. Protected Hort. Plant Fac. 25:255-261 (in Korean). https://doi.org/10.12791/KSBEC.2016.25.4.255
  15. Li, Y., L.R. Wang, G.R. Zhu, W.C. Fang, K. Cao, C.W. Chen, X.W. Wang, and X.L. Wang. 2016. Phenological response of peach to climate change exhibits a relatively dramatic trend in China, 1983-2012. Sci. Hortic. 209:192-200. https://doi.org/10.1016/j.scienta.2016.06.019
  16. Lloyd, D.A., and G.A. Couvillon. 1974. Effects of the date of defoliation on flowers and leaf bud development in peach (Prunus persica L. Datsch). J. Amer. Soc. Hort. Sci. 99: 514-517.
  17. Oh, S.J., K.H. Moon, I.C. Son, E.Y. Song, Y.E. Moon, and S.C. Koh. 2014. Growth, photosynthesis and chlorophyll fluorescence of chinese cabbage in response to high temperature. Kor. J. Hort. Sci. Technol. 32:318-329 (in Korean).
  18. Pandey, R., P.M. Chacko, M.L. Choudhary, K.V. Prasad, and M. Pal. 2007. Higher than optimum temperature under $CO_2$ enrichment influences stomata anatomical characters in rose(Rosa hybrida). Sci. Hortic. 113:74-81. https://doi.org/10.1016/j.scienta.2007.01.021
  19. Penso, G.A., I. Citadin, S. Scariotto, C.E. Santos, A.W. Junior, C.H. Bruckner, and J. Rodrigo. 2020. Development of peach flower buds under low winter chilling conditions. Agronomy 10:428-448. https://doi.org/10.3390/agronomy10030428
  20. Ro, H.M., P.G. Kim, I.B. Lee, M.S. Yiem, and S.Y. Woo. 2001. Photosynthetic characteristics and growth responses of dwarf apple (Malus Domestica Borkh. cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees 15:195-203. https://doi.org/10.1007/s004680100099
  21. Shen, Y.Y., J.X. Guo, C.L. Liu, and K.G. Jia. 1999. Effect of temperature on the development of peach flower organs. Acta Hortic. Sinica 26:1-6.
  22. Son, I.C., J.W. Han, J.G. Cho, S.H. Kim, E.H. Chang, S.I. Oh, K.H. Moon, and I.M. Choi. 2014. Effect of the elevated temperature and carbon dioxide on vine growth and fruit quality of 'Campbell Early' grapevines (Vitis labruscana). Kor. J. Hort. Sci. Technol. 33:781-787 (in Korean).
  23. Song, E.Y., K.H. Moon, I.C. Son, S.H. Wi, C.H. Kim, C.K. Lim, and S.J. Oh. 2015. Impact of elevating temperature based on climate change scenarios on growth and fruit quality of red pepper (Capsicum annuum L.). Kor. J. Agric. For. Meteor. 17: 248-253 (in Korean). https://doi.org/10.5532/KJAFM.2015.17.3.248
  24. Tanaka, Y., S.S. Sugano, T. Shimada, and I.H. Nishimura. 2013. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytologist 198:727-764.
  25. WMO (World Meteorological Organization). 2019. The Global Climate in 2015-2019. Geneva, Switzerland. p. 5.
  26. Yoon, I.K., S.K. Yun, J.H. Jun, E.Y. Nam, J.H. Kwon, H.J. Bae, B.W. Moon, and H.K. Kang. 2013. Analysis on the leaf growth and changes of photosynthetic characterization by leaf position in 'Changhowon Hwangdo' peach. Protected Hort. Plant Fac. 22:361-365 (in Korean). https://doi.org/10.12791/KSBEC.2013.22.4.361
  27. Zhang, J., X. Jiang, T. Li, and T. Chang. 2012. Effect of elevated temperature stress on the production and metabolism of photosynthate in tomato(Lycopersicon esculentum L.) leaves.J. Hortic. Sci. Biotech. 87:293-298.
  28. Zheng, Y., M. Xu, R. Shen, and S. Qiu. 2013. Effects of artificial warming on the structural, physiological, and biochemical changes of maize (Zea mays L.) leaves in northern China. Acta Physiol. Plant 35:2891-2904. https://doi.org/10.1007/s11738-013-1320-z