References
- S. Y. Lim, M. J. Kim, "Digital Twin Application Plan for Smart City Success", Brief, Korea Research Institute for Human Settlements, Korea, pp.1-6, 2018.
- K. H. Bae, G. W. Ham, J. M. Lee, "A Study on Estimating the Vegetable Cultivation Complex Area using Aerial Photogrammetry", Journal of the Korean Association of Geographic Information Studies, Vol.21, No.4, pp.108-118, 2018. DOI: https://doi.org/10.11108/kagis.2018.21.4.108
- H. Y. LIm, K. H. Ro, "A Study on a CMS Platform for AR-based Remote Collaboration in a Smart Factory", Journal of Digital Convergence, Vol.16, No.12, pp.327-334, 2018. DOI: https://doi.org/10.14400/JDC.2018.16.12.327
- Y. J. Cha, W. Choi, O. Buyukozturk, "Deep learningbased crack damage detection using convolutional neural networks", Computer‐Aided Civil and Infrastructure Engineering, Vol.32, No.5, pp.361-378, 2017. DOI: https://doi.org/10.1111/mice.1226
- N. Kussul, M. Lavreniuk, S. Skakun, A. Shelestov, "Deep learning classification of land cover and crop types using remote sensing data", IEEE Geoscience and Remote Sensing Letters, Vol.14, No.5, pp.778-782, 2017. DOI: https://doi.org/10.1109/LGRS.2017.2681128
- N. Lv, C. Chen, T. Qiu, A. K. Sangaiah, "Deep learning and superpixel feature extraction based on contractive autoencoder for change detection in SAR images", IEEE transactions on industrial informatics, Vol.14, No.12, pp.5530-5538, 2018. DOI: https://doi.org/10.1109/TII.2018.2873492
- Y. Cao, F. Yang, Q. Tang, X. Lu, "An attention enhanced bidirectional LSTM for early forest fire smoke recognition", IEEE Access, Vol.7, pp.154732-154742, 2019. DOI: https://doi.org/10.1109/TII.2018.2873492
- M. Saqib, S. D. Khan, N. Sharma, P. Scully-Power, P. Butcher, A. Colefax, M. Blumenstein, "Real-time drone surveillance and population estimation of marine animals from aerial imagery", In 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp.1-6, 2018. DOI: https://doi.org/10.1109/IVCNZ.2018.8634661
- S. P. Mohanty, D. P. Hughes, M. Salathe, "Using deep learning for image-based plant disease detection", Frontiers in plant science, Vol.7, 1419, 2016. DOI: https://doi.org/10.3389/fpls.2016.01419
- H. L. Wang, M. Zhu, C. B. Lin, D. B. Chen, "Ship detection in optical remote sensing image based on visual saliency and AdaBoost classifier", Optoelectronics Letters, Vol.13, No.2, pp.151-155, 2017. DOI: https://doi.org/10.1007/s11801-017-7014-9
- Y. Li, J. Li, J. S. Pan, "Hyperspectral image recognition using SVM combined deep learning", Journal of Internet Technology, Vol.20, No.3, pp.851-859. 2019.
- H. J. Kim, J. M. Lee, K. H. Bae, Y. D. Eo, "Application research on obstruction area detection of building wall using R-CNN technique", Journal of Cadastre & Land InformatiX, Vol.48, No.2, pp.213-225, 2016. DOI: https://doi.org/10.22640/lxsiri.2018.48.2.213
- L. M. Dang, S. I. Hassan, I. Suhyeon, A. kumar Sangaiah, I. Mehmood, S. Rho, H. Moon, "UAV based wilt detection system via convolutional neural networks", Sustainable Computing: Informatics and Systems, 2018. DOI: https://doi.org/10.1016/j.suscom.2018.05.01
- M. J. Kang, "Comparison of gradient descent for deep learning", Journal of the The Korea Academia-Industrial Cooperation Society, Vol.21, No.2, pp.189-194, 2020. DOI: https://doi.org/10.5762/KAIS.2020.21.2.189
- K. He, X. Zhang, S. Ren, J. Sun, "Deep residual learning for image recognition", In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.
- J. Davis, M. Goadrich, "The relationship between Precision-Recall and ROC curves", In Proceedings of the 23rd international conference on Machine learning, pp.233-240, 2016. DOI: https://doi.org/10.1145/1143844.1143874