DOI QR코드

DOI QR Code

Development of Predictive Models of Listeria monocytogenes in Fresh-Cut Fruits and Vegetables

신선편의 냉장·냉동 과채류에서 Listeria monocytogenes의 예측모델 개발

  • Kim, Geun Hyang (Department of Food and Nutrition, Kyung Hee University) ;
  • Lim, Ju Young (Department of Food and Nutrition, Kyung Hee University) ;
  • Kim, Yeon Ho (Department of Food and Nutrition, Kyung Hee University) ;
  • Yang, So Young (Department of Food and Nutrition, Kyung Hee University) ;
  • Yoon, Ki Sun (Department of Food and Nutrition, Kyung Hee University)
  • Received : 2020.08.20
  • Accepted : 2020.10.12
  • Published : 2020.10.30

Abstract

Processing fresh produce into fresh-cut products increases the risk of bacterial growth and contamination by breaking the exterior barrier of produce. Our objective in this study was to develop predictive models of Listeria monocytogenes in the fresh-cut salad, fresh-cut pineapple, and frozen mango. Predictive growth and survival models were developed to predict the change of L. monocytogenes populations in the fresh-cut salad (4, 10, 12, 13, 17, 25, and 36℃), fresh-cut pineapple (4, 10, 17, 25, 30, and 36℃), and frozen mango (-2, -10 and -18℃) as a function of temperature. The growth of L. monocytogenes in fresh-cut salad and pineapple was observed at above 13℃ and 10℃, respectively. The growth of L. monocytogenes in pineapple was faster than in salad. The delta value of L. monocytogenes in frozen mango increased as the storage temperature decreased. The results indicate that L. monocytogenes behave differently according to the physicochemical properties of fresh-cut fruits and vegetables. Since L. monocytogenes grow and survive well in refrigerated and frozen conditions, management programs and preventive controls for the processing of fresh-cut produce should be effectively implemented to enhance the safety of fresh-cut fruits and vegetables at retail markets.

본 연구에서는 농산물에서 오염 가능성이 있는 병원성식중독 균 L. monocytogenes에 대해 신선편의 샐러드, 파인애플, 냉동망고에서 예측 모델을 개발하고, 본 연구에서 개발된 예측 모델을 다른 제품에서 적용 여부를 검증하였다. 시료에 L. monocytogenes를 접종하여 각각의 저장 온도에 보관 시 샐러드는 13℃, 파인애플은 10℃ 이상에서 성장하였으며, 두 식품 중 파인애플에서 L. monocytogenes가 더 빠르게 성장하는 것으로 확인 되었다. 또한, 냉동망고에 접종한 L. monocytogenes는 -2, -10, -18℃의 저장온도에서 온도가 낮아질수록 delta 값이 커지며 생존력이 높아지는 양상을 보였다. 본 실험 검증을 통해 같은 신선편의 과일, 채소 식품 그룹에 속하더라도 식품 각각의 특성에 따라 L. monocytogenes의 성장 패턴은 일정하지 않으며 각기 다른 행동 패턴을 보이는 것으로 확인하였다. 신선편의 샐러드 및 절단된 과일류는 냉장유통 되며 추가세척 없이 소비되는 제품 특성상 공정과정에서 L. monocytogenes에 의한 오염이 일어나지 않도록 위생관리에 주의하고 유통과정에서 온도 남용이 되지 않도록 유통온도 관리에도 유의해야할 것으로 사료된다.

Keywords

References

  1. Park, S.Y., Yeon, J.H., Choi, J.W., Lee, M.J., Lee, D.H., Kim, K.S.,Park, K.H., Ha, S.D., Assessment of contamination levels of foodborne pathogens isolated in major RTE foods marketed in convenience stores. Korean J. Food Sci. Technol., 37(2), 274-278(2005).
  2. Kim, G.H., Bang, H.Y., A survey on consumption patternof minimally processed fruits and vegetables. Korean J. Food Culture., 13(4), 267-274.(2) (1998).
  3. Kim, S.H., Lee, K.I., Heo, S.Y., Lee, W.J., Research on Freshcut Fruits and Vegetables. Korea Rural Economic Institute Report, 1-307 (2019).
  4. Food Information Statistic System, (2017, February 06). Status of processed food segment markets 2016-convenience food market. Retrieved from https://www.atfis.or.kr/article/M001050000/view.do?articleId=2398&page=6&search-Key=&searchString=&searchCategory=
  5. Park, H.O., Kim, C.M., Woo, G.J., Park, SH., Lee, D.H., Chang, E.J., Park, K.H., Monitoring and trend analysis of food poisoning outbreaks occurred in recent years in Korea. J. Food Hyg. Saf., 16(4), 280-294 (2001).
  6. Centers for Disease Control and Prevention, (2019, September 12). Foodborne Disease Outbreak Surveillance System. Retrieved from https://www.cdc.gov/fdoss/annual-reports/index.html
  7. Heaton, J.C., Jones. K., Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: A review. J. Appl. Microbiol., 104(3), 613-626 (2008). https://doi.org/10.1111/j.1365-2672.2007.03587.x
  8. Centers for Disease Control and Prevention, (2020, March 10). Listeria Outbreaks. Retrieved from https://www.cdc.gov/listeria/outbreaks
  9. Centers for Disease Control and Prevention, (2012, August 27). Multistate outbreak of listeriosis linked to whole cantaloupes from Jensen Farms, Colorado. Retrieved from http://www. cdc. gov/listeria/outbreaks/cantaloupes-jensen-farms/index. html.
  10. Lianou, A., Sofos, J.N., A review of the incidence and transmission of Listeria monocytogenes in ready-to-eat products in retail and food service environments. J. Food Prot., 70(9), 2172-2198 (2007). https://doi.org/10.4315/0362-028X-70.9.2172
  11. European Food Safety Authority, (2018, July, 3). Listeria monocytogenes: update on foodborne outbreak. Retrieved from https://www.efsa.europa.eu/en/press/news/180703
  12. Kim, J.S., Bang, O.K., Ghang, H.C., Examination of microbiological contamination of ready-to-eat vegetable salad. J. Food Hyg. Saf., 19, 60-65 (2004).
  13. Beuchat, L.R., Pathogenic microorganisms associatedwith fresh produce. J. Food Prot., 59(2), 204-216 (1996). https://doi.org/10.4315/0362-028X-59.2.204
  14. Farber, J.M., Peterkin, P.I., Listeria monocytogenes, a foodborne pathogen. Microbiol. Mol. Biol. Rev., 55(3), 476-511 (1991).
  15. Centers for Disease Control and Prevention, (2016, July 27). Multistate Outbreak of Listeriosis Linked to Frozen Vegetables. Retrieved from https://www.cdc.gov/listeria/outbreaks/frozen-vegetables-05-16/index.html
  16. Cho, J.I., Lee, S.H., Lim, J.S., Kwak, H.S., Hwang, I.G., Predictive mathematical model for the growth kinetics of Listeria monocytogenes on smoked salmon. J. Food Hyg. Saf., 26(2), 120-124 (2011).
  17. Cho, J.I., Lee, S.H., Lim, J.S., Kwak, H.S., Hwang, I.G., Development of a predictive model describing the growth of Listeria monocytogenes in fresh cut vegetable. J. Food Hyg. Saf., 26(1), 25-30 (2011).
  18. Hong, C.H., Sim, W.C., Chun, S.J., Kim, Y.S., Oh, D.H., Ha, S.D., Choi W.S., Bahk, G.J., Predictive Growth Model of Native Isolated Listeria monocytogenes on raw pork as a Function of Temperature and Time. Korean J. Food Sci. Technol, 37(5), 850-855 (2005).
  19. Han, Y.J., Park, M.S., Bahk, G.J., Development of a predictive model for growth of Listeria monocytogenes on cooked sausage in cold storage in the household. Korean J. Food Preserv., 26(2), 135-140 (2019). https://doi.org/10.11002/kjfp.2019.26.2.135
  20. Gibson, A.M., Bratchell, N., Roberts, T.A., The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J Appl. Bacteriol., 62(6), 479-490 (1987). https://doi.org/10.1111/j.1365-2672.1987.tb02680.x
  21. Geeraerd, A.H., Valdramidis, V.P., Van Impe, J.F., GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol., 102(1), 95-105 (2005). https://doi.org/10.1016/j.ijfoodmicro.2004.11.038
  22. Davey, K.R., A predictive model for combined temperature and water activity on microbial growth during the growth phase. J. Appl. Bacteriol., 67(5), 483-488 (1989). https://doi.org/10.1111/j.1365-2672.1989.tb02519.x
  23. Ratkowsky, D.A., Olley, J., McMeekin, T.A., Ball, A., Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol., 149(1), 1-5 (1982). https://doi.org/10.1128/JB.149.1.1-5.1982
  24. McMeekin, T.A., Olley, J., Ross, T., Ratkowsky, D.A., 1993. Predictive microbiology: theory and application. John Wiley & Sons Ltd., Hoboken, NJ, USA, pp 87-113
  25. Ross, T., Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol., 81(5), 501-508 (1996). https://doi.org/10.1111/j.1365-2672.1996.tb03539.x
  26. Abou-Zeid, K.A., Oscar, T.P., Schwarz, J.G., Hashem, F.M., Whiting, R.C., Yoon, K., Development and validation of a predictive model for Listeria monocytogenes Scott A as a function of temperature, pH, and commercial mixture of potassium lactate and sodium diacetate. J. Microbiol. Biotechnol., 19(7), 718-726 (2009). https://doi.org/10.4014/jmb.0809.534
  27. Baranyi, J., Ross, T., McMeekin, T.A., Roberts, T.A., Effects of parameterization on the performance of empirical models used inpredictive microbiology. Food Microbiol., 13(1), 83-91 (1996). https://doi.org/10.1006/fmic.1996.0011
  28. Farber, J.M., Wang, S.L., Cai, Y., Zhang, S., Changes in populations of Listeria monocytogenes inoculated on packaged fresh-cut vegetables. J. Food Prot., 61(2), 192-195 (1998). https://doi.org/10.4315/0362-028X-61.2.192
  29. Ding, T., Jin, Y.G., Oh, D.H., Predictive model for growth of Listeria monocytogenes in untreated and treated lettuce with alkaline electrolyzed water. World J. Microbiol. Biotechnol., 26(5), 863-869 (2010). https://doi.org/10.1007/s11274-009-0245-6
  30. Ziegler, M., Rüegg, S., Stephan, R., Guldimann, C., Growth potential of Listeria monocytogenes in six different RTE fruit products: impact of food matrix, storage temperature and shelf life. Ital. J. Food Saf., 7(3), 7581 (2018). https://doi.org/10.4081/ijfs.2018.7581
  31. Yoon, J.H., Bae, Y.M., Jung, S.Y., Cha, M.H., Ryu, K., Park, K.H., Lee, S.Y., Predictive modeling for the growth of Listeria monocytogenes and Salmonella Typhimurium on freshcut cabbage at various temperatures. J. Korean Soc. Appl. Biol. Chem., 57(5), 631-638 (2014). https://doi.org/10.1007/s13765-014-4096-y
  32. Bahk, G.J., Statistical probability analysis of storage temperatures of domestic refrigerator as a risk factor of foodborne illness outbreak. Korean J. Food Sci. Technol., 42(3), 373-376 (2010).
  33. Iturriaga, M.H., Arvizu-Medrano, S.M., Escartin, E.F., Behavior of Listeria monocytogenes in avocado pulp and processed guacamole. J. Food Prot., 65(11), 1745-1749 (2002). https://doi.org/10.4315/0362-028X-65.11.1745
  34. Penteado, A.L., de Castro, M.F.P., Rezende, A.C., Salmonella enterica serovar Enteritidis and Listeria monocytogenes in mango (Mangifera indica L.) pulp: growth, survival and cross-contamination. J. Sci. Food Agric., 94(13), 2746-2751 (2014). https://doi.org/10.1002/jsfa.6619
  35. Ali, A.A., Mohammed, A.M., Isa, A.G., Antimicrobial effects of crude bromelain extracted from pineapple fruit (Ananas comosus (Linn.) Merr.). Adv. Biochem., 3(1), 1-4 (2015). https://doi.org/10.11648/j.ab.20150301.11
  36. Beuchat, L.R., Golden, D.A., Antimicrobials occurring naturally in foods. Food Technol., 43, 134-142 (1989).
  37. Yoon, J.Y., Choi, Y.K., Park, J.S., Jung, H.H., Song, J.H., Jeon, H.H., Lee J.C., Kim, H.J., Effect of various sugar additives on characteristics and sensory. Food Eng. Prog., 19(3), 255-262 (2015). https://doi.org/10.13050/foodengprog.2015.19.3.255