DOI QR코드

DOI QR Code

SF6, g3 및 Dry Air 절연에서 PD 특성 비교 분석

Comparative Analysis of PD Characteristics Under SF6, g3 and Dry Air Insulation

  • 신한신 (한국해양대학교 전기전자공학과) ;
  • 김남훈 (한국해양대학교 전기전자공학과) ;
  • 김성욱 (신라대학교 스마트전기전자공학부) ;
  • 길경석 (한국해양대학교 전기전자공학과)
  • Shin, Han-sin (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Kim, Nam-Hoon (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University) ;
  • Kim, Sung-Wook (Division of Smart Electrical and Electronic Engineering, Silla University) ;
  • Kil, Gyung-Suk (Department of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
  • 투고 : 2020.08.10
  • 심사 : 2020.08.27
  • 발행 : 2020.11.01

초록

Sulphur hexafluoride (SF6) is mostly used as a current-insulating medium in gas-insulated switchgears (GIS), owing to its excellent dielectric strength and arc-extinguishing performance. The global warming potential (GWP) of SF6, however, is 23,900 times that of CO2, and its life time in the atmosphere is 3,200 years. For these reasons, new eco-friendly gases to replace SF6 are required. In this study, the partial discharge (PD) characteristics of green gas for grid (g3) and dry air (N2/O2) were analyzed to compare with those of SF6. A PD electrode system was designed to simulate the protrusion defect in GISs and fabricated for experimentation. To compare the PD characteristics of each gas, the discharge inception voltage (DIV), discharge extinction voltage (DEV), discharge magnitude, discharge pulse number, and phase pattern were analyzed. Results from this study are expected to provide fundamental materials for the design of eco-friendly GISs.

키워드

참고문헌

  1. S. J. Kim, H. E. Jo, G. W. Jeong, G. S. Kil, and S. W. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 40 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.1.40]
  2. S. Okabe, J. Wada, and G. Ueta, IEEE Trans. Dielectr. Electr. Insul., 22, 2108 (2015). [DOI: https://doi.org/10.1109/TDEI.2015.005040]
  3. H. E. Jo, S. J. Kim, G. W. Jeong, and G. S. Kil, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 320 (2015). [DOI: https://doi.org/10.4313/JKEM.2015.28.5.320]
  4. Intergovernmental Panel on Climate Change(IPCC) WG, Fifth Assessment Report: The Physical Science Basis, Climate Change (2013).
  5. N. H. Kim, G. S. Kil, and S. W. Kim, Journal of the Korean Society for Railway, 22, 374 (2019). [DOI: https://doi.org/10.7782/JKSR.2019.22.5.374]
  6. Y. Wang, D. Huang, J. Liu, Y. Zhang, and L. Zeng, Processes, 7, 216 (2019). [DOI: https://doi.org/10.3390/pr7040216]
  7. H. Saitoh, K. Morita, T. Kikkawa, N. Hayakawa, and H. Okubo, Electr Eng. Jpn., 148, 36 (2004). [DOI: https://doi.org/10.1002/eej.10277]
  8. G. Wang, W. H. Kim, J. B. Kong, G. S. Kil, and H. K. Ji, Trans. Electr. Electron. Mater., 19, 195 (2018). [DOI: https://doi.org/10.1007/s42341-018-0037-5]
  9. CIGRE JWG 33/23.12, Insulation co-ordination of GIS: Return of experience on site Tests and diagnostic techniques, Electra (1998).
  10. G. Wang, H. E. Jo, S. J. Kim, S. W. Kim, and G. S. Kil, Measurement, 91, 351 (2016). [DOI: https://doi.org/10.1016/j.measurement.2016.05.033]
  11. M. S. Kim, S. J. Kim, G. W. Jeong, H. E. Jo, and G. S. Kil, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 238 (2014). [DOI: https://doi.org/10.4313/JKEM.2014.27.4.238]
  12. M. Pompili, C. Mazzetti, M. Libotte, and E. O. Forster, IEEE Trans. Electr. Insul., 28, 1002 (1993). [DOI: https://doi.org/10.1109/14.249373]