DOI QR코드

DOI QR Code

한반도 지반운동 구현 모델 개발

Development of the Ground Motion Simulation Model for the Korean Peninsula

  • 투고 : 2020.07.13
  • 심사 : 2020.10.07
  • 발행 : 2020.10.30

초록

The Korean peninsula is located in a stable continental region with low to moderate seismicity. Recently, three earthquake events (foreshock and mainshock of the 2016 Gyeongju earthquake, mainshock of the 2017 Pohang earthquake) with higher than M=5.0 caused economic loss with major damage on existing structures nearby communities. The main purpose of this study is to develope regional ground motion simulation model with considering representative regional earthquake characteristics (source, path, site effects) for the Korean peninsula. The accuracy of the developed model is verified by comparing recorded and simulated ground motion parameters (PGA and PSAs).

키워드

과제정보

본 연구는 국토교통과학기술진흥원(20CTAP-C152179-02)에 의하여 수행된 것으로 이에 감사를 표한다.

참고문헌

  1. Ameri, G., Oth, A., Pilz, M., Bindi, D., Parilai, S., Luzi, L., Mucciarelli, M., & Cultrera, G. (2010). Separation of source and site effects by generalized inversion technique using the aftershock recordings of the 2009 L'Aquila earthquake, Bulletin of Earthquake Engineering, 9(3), 717-739. https://doi.org/10.1007/s10518-011-9248-4
  2. Anderson, J.G., & Hough, S.E. (1984). A Model for the Shape of the Fourier Amplitude Spectrum of Acceleration at High Frequencies, Bulletin of the Seismological Society of America, 74, 1969-1993.
  3. Andrews, D.J. (1986). Objective Determination of Source Parameters and Similarity of Earthquakes of Different Size, Geophysical Monographs Series, 37, 259-267.
  4. Atkinson, G.M., & Boore, D.M. (1995). New Ground Motion Relations for Eastern North America, Bulletin of the Seismological Society of America, 85, 17-30.
  5. Atkinson, G.M., & Mereu, G.F. (1992). The Shape of Ground Motion Attenuation Curves in Southeastern Canada, Bulletin of the Seismological Society of America, 82, 2014-2031.
  6. Bard, P.Y., Bora, S.S., Hollender, F., Laurendeau, A., & Traversa, P. (2020). Are the Standard Vs-Kappa Host-to-Target Adjustments the Only Way to Get Consistent Hard-Rock Ground Motion Prediction?, Pure and Applied Geophysics, 177, 2049-2068. https://doi.org/10.1007/s00024-019-02173-9
  7. Boore, D.M., & Boatwright, J. (1984). Average Body-wave Radiation Coefficients, Bulletin of the Seismological Society of America, 74(5), 1615-1621. https://doi.org/10.1785/BSSA0740051615
  8. Boore, D.M. (1983). Stochastic Simulation of High Frequency Ground Motion Based on Seismological Models of the Radiated Spectra, Bulletin of the Seismological Society of America, 73, 1865-1893.
  9. Boore, D.M. (2003). Prediction of Ground Motion Using the Stochastic Method, Pure and Applied Geophysics, 160, 635-676. https://doi.org/10.1007/PL00012553
  10. Braganza, S., & Atkinson, G.M. (2017). A Model for Estimating Amplification Effects on Seismic Hazards and Scenario Ground Motions in Southern Ontario, Canadian Journal of Civil Engineering, 44(6).
  11. Frankel, A. (1994). Implications of felt area-magnitude relations for earthquake scaling and the average frequency of perceptible ground motion, Bulletin of the Seismological Society of America, 84(2), 462-465.
  12. Han, S.W., & Jee, H.W. (2020). A Numerical Model for Simulating Ground Motions for the Korean Peninsula, Applied sciences, 10(4), 1254. https://doi.org/10.3390/app10041254
  13. Hanks, T.C., & Kanamori, H. (1979). A moment magnitude scale, Journal of Geophysical Research, 84(5), 2348-2350. https://doi.org/10.1029/JB084iB05p02348
  14. Hashash, Y.M.A., Kottke, A.R., Stewart, J.P., Campbell, K.W., Kim, B., Moss, C., Nikolaou, S., Rathje, E.M., & Silva, W.J. (2014). Reference Rock Site Condition for Central and Eastern North America, Bulletin of the Seismological Society of America, 104, 684-701. https://doi.org/10.1785/0120130132
  15. Houtte, C.V., Drouet, S., & Cotton, F. (2011). Analysis of the Origins of ${\kappa}$ (Kappa) to Compute Hard Rock to Rock Adjustment Factors for GMPEs, Bulletin of the Seismological Society of America, 101(6).
  16. Husid, P. (1967). Gravity Effects on the Earthquake Response of Yielding Structures, PhD. thesis. California Institute of Technology, 1-153.
  17. Jee, H.W., & Han, S.W. (2020). Estimation of Path Attenuation Effect from Ground Motion in the Korean Peninsula using Stochastic Point-source Model, Journal of the Earthquake Engineering Society of Korea, 24(1), 9-17. https://doi.org/10.5000/EESK.2020.24.1.009
  18. Jeong, G.H., Lee, H.S., & Hwang, K.R. (2017). Estimation of Earthquake Magnitude-Distance Combination Corresponding to Design Spectrum in Korean Building Code 2016, Journal of the Earthquake Engineering Society of Korea, 21(1), 31-39. https://doi.org/10.5000/EESK.2017.21.1.031
  19. Joshi, A. (2006). Use of Acceleration Spectra for Determining the Frequency-Dependent Attenuation Coefficient and Source Parameters, Bulletin of the Seismological Society of America, 96(6), 2165-2180. https://doi.org/10.1785/0120050095
  20. Korea Meteorological Administration (KMA) (2012). Historical Earthquake Records in Korea, Korea Meteorological Administration.
  21. Konno, K., & Ohmachi, T. (1998). Ground-motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor, Bulletin of the Seismological Society of America, 88, 228-241.
  22. McCann, M.W.J., & Shah, H.C. (1979). Determining Strong Motion Duration of Earthquakes, Bulletin of the Seismological Society of America, 69(4), 1253-1265.
  23. Ministry of Land, Infrastructure and Transport (2018). Korean Design Standard (KDS 17 10 00), Earthquake Engineering Society of Korea.
  24. Nakamura, Y. (1989). A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface, Quarterly Report of Railway Technical Research, 30, 25-33.
  25. National Emergency Management Agency (NEMA) (2012). Active Fault Map and Seismic Harzard Map. National Emergency Management Agency.
  26. Parolai, S., Bindi, D., & Augliera, P. (2000). Application of the Generalized Inversion Technique (GIT) to a Microzonation Study: Numerical Simulations and Comparison with Different Site-Estimation Techniques, Bulletin of the Seismological Society of America, 90(2), 286-297. https://doi.org/10.1785/0119990041
  27. Saragoni, G., & Hart, G. (1974). Simulation of Artificial Earthquakes, Earthquake Engineering and Structural Dynamics, 2, 249-267. https://doi.org/10.1002/eqe.4290020305
  28. Tao, K., Grand, S.P., & Niu, F. (2018). Seismic Structure of the Upper Mantle Beneath Eastern Asia From Full Waveform Seismic Tomography, Geochemistry, Geophysics, Geosystems, 19(8), 2732-2763. https://doi.org/10.1029/2018GC007460
  29. Yang, D., & Zhou, J. (2015). A stochastic model and synthesis for near-fault impulsive ground motions, Earthquake Engineering and Structural Dynamics, 44(2).
  30. Yefei, R., Ruizhi, W., Yamanaka, H., & Kashima, Y. (2013). Site effects by generalized inversion technique using strong motion recordings of the 2008 Wenchuan earthquake, Earthquake Engineering and Engineering Vibration, 12(2).
  31. Yenier, E., & Atkinson, G.M. (2015). An Equivalent Point-Source Model for Stochastic Simulation of Earthquake Ground Motions in California, Bulletin of the Seismological Society of America, 105(3), 1435-1455. https://doi.org/10.1785/0120140254
  32. Zandieh, A., & Pezeshk, S. (2010). Investigation of Geometrical Spreading and Quality Factor Functions in the New Madrid Seismic Zone, Bulletin of the Seismological Society of America, 100, 2185-2195. https://doi.org/10.1785/0120090209
  33. Zhao, J.X., Irikura, K., Zhang, J., Yoshimitsu, F., Somerville, P.G., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., & Ogawa, H. (2006). An Empirical Site Classification Method for Strong Motion Stations in Japan Using H/V Response Spectral Ratio, Bulletin of the Seismological Society of America, 96, 914-925. https://doi.org/10.1785/0120050124