DOI QR코드

DOI QR Code

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image

초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안

  • Gwon, Yeonghwa (Department of Civil & Environmental Engineering, Dankook University) ;
  • Kim, Dongsu (Department of Civil & Environmental Engineering, Dankook University) ;
  • You, Hojun (IIHR-Hydroscience & Engineering, University of Iowa)
  • Received : 2020.07.09
  • Accepted : 2020.08.24
  • Published : 2020.10.31

Abstract

Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.

최근 기후변화와 여름철 고온 등으로 인한 녹조현상, 사고발생으로 인한 화학물질 및 유류 유출 등 수질오염과 관련된 사회적 관심이 높아지고 있다. 수질오염 사례 중 화학사고로 인한 유해화학물질 유출은 인체에 접촉시 인체에 악영향을 끼치며, 대기·수질·토양을 오염시키고 주변 농작물의 변색이나 괴사를 유발하는 등 생태환경에 직접적인 피해가 발생한다. 하천으로 유출가능성이 있는 화학물질은 무색의 수용성인 경우가 많아 육안으로 유출 사실을 확인하기가 어렵다. 화학사고 발생시 화학물질의 탐지는 간이접촉식탐지장비를 이용하거나 화학물질의 유출이 우려되는 곳에 검출센서를 설치해 사고를 감시하고 있다. 이러한 접촉식 센서는 현장인력에 의존적이고, 설치식 검출센서 또한 제한적으로 설치되어 미설치 지역에 대한 능동적 탐지가 어렵다는 한계가 있다. 한편 최근 초분광 영상을 활용하여 물질 고유의 분광특성을 분석함으로써 토지피복, 식생, 수질 등의 식별에 활용되고 있다. 따라서 초분광 센서를 활용한 화학물질 감지 가능성도 보여주고 있지만 연구는 미비한 실정이다. 본 연구에서는 수계로 유출되는 유해화학물질을 식별하기 위하여 접촉식 탐지 기술의 한계를 극복할 수 있는 원격탐사기법과 최신 센서기술을 활용하였다. 유해화학물질 18종을 대상으로 초분광 영상을 이용한 상호 구분이 가능한 지 확인하고자 해당 유해화학물질의 초분광 영상을 촬영하여 분광라이브러리를 구축하였다. 향후 연구를 통해 유해화학물질 분광라이브러리 데이터베이스를 확대하고, 하천 적용에 대한 검증을 실시한 후 실시간 모니터링에 적용할 경우 신속한 화학사고 발생여부 감지 및 대응에 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Baldridge, A.M., Hook, S.J., Grove, C.I., and Rivera, G. (2009). "The ASTER spectral library version 2.0." Remote Sensing of Environment, Vol. 113, pp. 711-715. https://doi.org/10.1016/j.rse.2008.11.007
  2. Corning (2017). Corning microHSI 410 SHARK: Integrated, Coherent, Airborne Hyperspectral Imaging System, accessed 2 May 2020, .
  3. Fan, C.L. (2014). "Spectral analysis of water reflectance for hyperspectral remote sensing of water quality in estuarine water." Journal of Geoscience and Environment Protection, SciRes., No. 2, pp. 19-27.
  4. Fowler, J.E. (2014). "Compressive pushbroom and whiskbroom sensing for hyperspectral remote-sensing imaging." 2014 IEEE International Conference on Image Processing (ICIP), IEEE, Paris, France, pp. 684-688.
  5. Friedman, J.H. (1984a). A variable span scatterplot smoother. Laboratory for Computational Statistics, Stanford University Technical Report No. 5, pp. 1-30.
  6. Friedman, J.H. (1984b). SMART user's guide. Laboratory for Computational Statistics, Stanford University Technical Report No. 1, pp. 1-24.
  7. Kisevic, M., Morovic, M., and Andricevic, R. (2016). "The use of hyperspectral data for evaluation of water quality parameters in the river Sava" Fresenius Environmental Bulletin, Vol. 25, No. 11, pp. 4814-4822.
  8. Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K.E., Hoefen, T.M., Pearson, N.C., Wise, R.A., Benzel, W.M., Lowers, H.A., Driscoll, R.L., and Klein, A.J. (2017). USGS Spectral Library Version 7. U.S. Geological Survey, Reston, V.A., pp. 1-61.
  9. Lee, J.S., Jung, M.S., Cho, M.S., Ahn, S.Y., Kim, K.J., Yoon, Y.S., Yoon, J.H., and Seok, K.S. (2013). "Review on detection analysis and environmental impacts for nitric acid spill response" Korean Journal of Hazardous Materials, KIHM, Vol. 1, No. 2, pp. 25-30.
  10. Legleiter, C.J., Roberts, D.A., and Lawrence, R.L. (2009). "Spectrally based remote sensing of river bathymetry." Earth Surface Processes and Landforms, Vol. 34, No. 8, pp. 1039-1059. https://doi.org/10.1002/esp.1787
  11. McCoy, R.M. (2005). Field Methods in Remote Sensing, The Guilford Press, New York, N.Y., U.S., pp. 526-533.
  12. Meerdink, S.K., Hook, S.J., Roberts, D.A., and Abbott, E.A. (2019). "The ECOSTRESS spectral library version 1.0." Remote Sensing of Environment, Elsevier, Vol. 203, pp. 111-196.
  13. Ministry of Environment (ME) (2020). Republic of Korea, accessed 2 May 2020, .
  14. Mustard, J.F., Staid, M.I., and Fripp, W.J. (2001). "A semianalytical approach to the calibration of AVIRIS data to reflectance over water application in a temperate estuary." Remote Sensing of Environment, Vol. 75, pp. 335-349. https://doi.org/10.1016/S0034-4257(00)00177-2
  15. National Institute of Chemical Safety (NICS) (2020). Republic of Korea, accessed 2 May 2020, .
  16. Park, Y.J., Jang, H.J., Kim, Y.S., Baik, K.H., and Lee, H.S. (2014). "A research on the applicability of water quality analysis using the hyperspectral sensor." Journal of the Korean Society for Environmental Analysis, KSEA, Vol. 17, No. 3, pp. 113-125.
  17. Vohland, M., Ludwig, M., Thiele-Bruhn, S., and Ludwig, B. (2017). "Quantification of soil properties with hyperspectral data: Selecting spectral variables with different methods to improve accuracies and analyze prediction mechanisms." Journal of Remote Sensing, Vol. 9, No. 11, pp. 1-24.
  18. Yang, J.W., and Cho, G.S. (2019). "Construction and evaluation of spectral library for SWIR hyperspectral image analysis." Journal of Korean Society for Geospatial Information Science, KSIS, Vol. 27, No. 5, pp. 3-12. https://doi.org/10.7319/kogsis.2019.27.5.003
  19. You, H.J. (2018). Development of riverine bathymetry survey technique using drone-based hyperspectral image. Ph. D. dissertation, University of Dankook.
  20. You, J.S., and Chung, Y.J. (2014). "Case analysis of the harmful chemical substances; Spill." Fire Science and Engineering, KIFSE, Vol. 28, No. 6, pp. 90-98. https://doi.org/10.7731/KIFSE.2014.28.6.090