DOI QR코드

DOI QR Code

Phase Equilibria and Formation Behaviors of Methane Hydrate with Ethylene Glycol and Salts

에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 상평형과 형성 거동

  • Kim, Dong Hyun (Department of Energy and Resources Engineering, Kangwon National University) ;
  • Park, Ki Hun (Department of Energy and Resources Engineering, Kangwon National University) ;
  • Cha, Minjun (Department of Energy and Resources Engineering, Kangwon National University)
  • 김동현 (강원대학교 에너지-자원공학과) ;
  • 박기훈 (강원대학교 에너지-자원공학과) ;
  • 차민준 (강원대학교 에너지-자원공학과)
  • Received : 2020.06.02
  • Accepted : 2020.07.14
  • Published : 2020.11.01

Abstract

In this study, phase equilibria and formation behaviors of methane hydrate containing mono-ethylene glycol (MEG) and salts (sodium chloride, NaCl; sodium bromide, NaBr; sodium iodide, NaI) are investigated. Equilibrium conditions of methane hydrate containing MEG and salts are measured in a temperature range 272~283 K and a pressure range 3.5~11 MPa. Hydrate inhibition performance in the presence of additives can be summarized as follows: methane hydrate containing (5 wt% NaCl + 10 wt% MEG) > (5 wt% NaBr + 10 wt% MEG) > (5 wt% NaI + 10 wt% MEG). Formation behaviors of methane hydrate with MEG and salts are investigated for analyzing the induction time, gas consumption amount and growth rate of methane hydrates. There are no significant changes in the induction time during methane hydrate formation, but the addition of MEG and salts solution during hydrate formation can affect the gas consumption amount and growth rate.

이 연구에서는 에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 상평형과 형성 거동을 측정하였다. 염의 종류로는 염화나트륨(NaCl), 브롬화나트륨(NaBr), 아이오딘화나트륨(NaI)을 이용하였으며, 272~283 K의 온도 범위와 3.5~11 MPa의 압력범위에서 상평형 조건을 확인하였다. 5 wt% NaCl + 10 wt% MEG, 5 wt% NaBr + 10 wt% MEG, 5 wt% NaI + 10 wt% MEG의 순서로 메탄 하이드레이트의 억제 효과가 나타났음을 확인하였다. 에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 형성 거동은 생성유도시간, 가스소모량과 성장 속도를 분석하여 확인하였다. 에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 생성유도시간은 실험 조건에서 큰 차이를 보이지 않았지만, 에틸렌글리콜과 염의 첨가는 가스소모량과 성장 속도에 영향을 주었음을 확인할 수 있었다.

Keywords

References

  1. US Energy Information Administration, Energy Perspectives: Fossil fuels dominate U.S. energy consumption(2012).
  2. US Energy Information Administration, International Energy Outlook(2017).
  3. Farmer, P., Miller, D., Pieprzak, A., Rutledge, J. and Woods, R., "Exploring the subsalt, Oilfield Review," 8(1), 50-64(1996).
  4. Markum, R., Perdigao, B., Cunningham, R., Greenberg, J., Schempf, J., Wimmer, C. and Gamboa, S., "Cascade and Chinook," PennWell Custom Publishing(2012).
  5. Nicholas, J. W., Dieker, L. E., Sloan, E. D. and Koh, C. A., "Assessing the Feasibility of Hydrate Deposition on Pipeline Walls-adhesion Force Measurements of Clathrate Hydrate Particles on Carbon Steel," J. Colloid Interface Sci., 331(2), 322-328(2008). https://doi.org/10.1016/j.jcis.2008.11.070
  6. Sloan, E. D. Jr. and Koh, C., "Clathrate Hydrates of Natural Gases," CRC press(2007).
  7. Sloan, E. D., "Fundamental Principles and Applications of Natural Gas Hydrates," Nature, 426(6964), 353-363(2003). https://doi.org/10.1038/nature02135
  8. Sloan, E. D., Koh, C. A. and Sum, A. K., "Natural Gas Hydrates in Flow Assurance," Elsevier(2011).
  9. Mokhatab, S., Wilkens, R. J. and Leontaritis, K. J., "A Review of Strategies for Solving Gas-hydrate Problems in Subsea Pipelines," Energy Sources, Part A, 29(1), 39-45(2007). https://doi.org/10.1080/009083190933988
  10. Baek, S., Min, J. and Lee, J. W., "Inhibition Effects of Activated Carbon Particles on Gas Hydrate Formation At Oil-water Interfaces," RSC Advances, 5(72), 58813-58820(2015). https://doi.org/10.1039/C5RA08335D
  11. Cha, M., Baek, S., Morris, J. and Lee, J. W., "Hydrophobic Particle Effects on Hydrate Crystal Growth at the Water-Oil Interface," Chemistry An Asian J., 9(1), 261-267(2014). https://doi.org/10.1002/asia.201300905
  12. Baek, S., Min, J., Ahn, Y. H., Cha, M. and Lee, J. W., "Effect of Hydrophobic Silica Nanoparticles on the Kinetics of Methane Hydrate Formation in Water-in-Oil Emulsions," Energy Fuel, 33(1), 523-350(2019). https://doi.org/10.1021/acs.energyfuels.8b03210
  13. Min, J., Kang, D. W., Ahn, Y. H., Lee, W., Cha M. and Lee, J. W., "Recoverable Magnetic Nanoparticles as Hydrate Inhibitors," Chem. Eng. J., 389(1), 124461(2020). https://doi.org/10.1016/j.cej.2020.124461
  14. Choe, J., "Offshore Drilling Engineering," CIR publishing(2012).
  15. Park, K. H., Jeong, D., Yoon, J.-H. and Cha, M., "Experimental Measurements of Phase Equilibria Conditions for Methane Hydrates Containing Methanol/ethylene Glycol and NH4Cl Solutions," Fluid Ph. Equilib., 493, 43-49(2019). https://doi.org/10.1016/j.fluid.2019.04.005
  16. Mohammadi, A. H., Afzal, W. and Richon, D., "Gas Hydrates of Methane, Ethane, Propane, and Carbon Dioxide in the Presence of single NaCl, KCl, and $CaCl_2$ aqueous solutions: Experimental Measurements and Predictions of Dissociation Conditions," J. Chem. Thermodyn., 40(12), 1693-1697(2008). https://doi.org/10.1016/j.jct.2008.06.015
  17. Cha, M., Hu, Y. and Sum, A. K., "Methane Hydrate Phase Equilibria for Systems Containing NaCl, KCl, and $NH_4Cl$," Fluid Ph. Equilib., 413, 2-9(2016). https://doi.org/10.1016/j.fluid.2015.08.010
  18. Hu, Y., Lee, B. R. and Sum, A. K., "Universal Correlation for Gas Hydrates Suppression Temperature of Inhibited Systems: I. Single Salts," AIChE J., 63(11), 5111-5124(2017). https://doi.org/10.1002/aic.15846
  19. Hu, Y., Lee, B. R. and Sum, A. K., "Universal Correlation for Gas Hydrates Suppression Temperature of Inhibited Systems: II. Mixed Salts and Structure Type," AIChE J., 64(6), 2240-2250(2018). https://doi.org/10.1002/aic.16116
  20. Hu, Y., Lee, B. R. and Sum, A. K., "Universal Correlation for Gas Hydrates Suppression Temperature of Inhibited Systems: III. Salts and Organic Inhibitors," AIChE J., 64(11), 4097-4109(2018). https://doi.org/10.1002/aic.16369
  21. Sabil, K. M., Witkamp, G. J. and Peters, C. J., "Estimations of Enthalpies of Dissociation of Simple and Mixed Carbon Dioxide Hydrates from Phase Equilibrium Data," Fluid Ph. Equilib., 290, 109-114(2010). https://doi.org/10.1016/j.fluid.2009.07.006
  22. Sun, S., Zhao, J. and Yu, D., "Dissociation Enthalpy of Methane Hydrate in Salt Solution," Fluid Ph. Equilib., 456, 92-97(2018). https://doi.org/10.1016/j.fluid.2017.10.013
  23. Soave, G., "Equilibrium Constants from a Modified Redlich-kwong Equation of State," Chem. Eng. Sci., 27(6), 1197-1203(1972). https://doi.org/10.1016/0009-2509(72)80096-4
  24. Chaturvedi, E., Patidar, K., Srungavarapu, M., Laik, S. and Mandal, A., "Thermodynamics and Kinetics of Methane Hydrate Formation and Dissociation in Presence of Calcium Carbonate," Adv Powder Technol., 29(4), 1025-1034(2018). https://doi.org/10.1016/j.apt.2018.01.021
  25. Adisasmito, S., Frank III, R. J. and Sloan, E. D., "Hydrates of Carbon Dioxide and Methane Mixtures," J. Chem. Eng. Data, 36(1), 68-71(1991). https://doi.org/10.1021/je00001a020